
 

 

This project has been co-funded by the European Union’s Horizon Europe research and innovation programme under grant agreement 

No. 101177985. The project is supported by the Europe’s Rail Joint Undertaking and its members. UK participants in this project are 

funded by the UK. 

 

D6.3 AI IN FUTURE METRO OPERATIONS 

PROJECT ACRONYM NEXUS 

PROJECT START DATE 01/10/2024 

PROJECT DURATION (MONTHS) 24 

GRANT 10177985 

CALL HORIZON-JU-ER-2023-01 

TOPIC HORIZON-ER-JU-2023-EXPLR-02 

CONSORTIUM COORDINATOR STAM 

TITLE OF THE DELIVERABLE D6.3 – AI in future metro operations  

WORK PACKAGE 
WP6 — AI and Data Science Implementation in Metro 
Operation 

TYPE OF DELIVERABLE R — Document, report 

DISSEMINATION LEVEL PU - Public 

STATUS – VERSION, DATE Final – V4, 13/06/2025 

SUBMISSION DATE  13/06/2025 

 
  



 

 

 

 

 

PU — PUBLIC 

D6.3 – AI IN FUTURE METRO OPERATIONS  

    

1 

 

E 

AUTHORS/CONTRIBUTORS 

Name Organisation Contribution 

Michael Schmeja, Alexander Stocker, 
Alexander Zincke 

ViF 
Draft of chapters 1, 2, 3, 4, 5, 7  
and Executive Summary  

Marin Marinov, Hing Yan Tong,  
Lydia Egbo, Patrick Bannon 

AU Draft of chapters 4 and 5 

Bernhard Schauer, Sara Soltani,  
Selina Lorena Illenseer 

SIEM Contribution to chapters 2, 3 and Annex 

Pietro De Vito  STAM Draft of chapter 6 

Luca Oneto, Simone Minisi UNIGE Contribution to chapters 2, 4, 5 

   

QUALITY CONTROL 

 Name Organisation Date 

Primary reviewer 
Zlatin Trendafilov, 
Violina Velyova 

VTU 16/05/25 

Secondary reviewer 
André Freitas,  
Inês Pinho 

TIS 28/05/25 

Ethics review Javier Valls Prieto 
Universidad de 
Granada 

09/06/25 

Quality check Pietro De Vito STAM 09/06/25 

 

VERSION HISTORY 

Version Date Author Summary of changes 

01 09/05/25 Michael Schmeja First version for internal Review 

02 27/05/25 Michael Schmeja Second version for internal Review 

03 06/06/25 Michael Schmeja Third version for final Review 

04 13/06/25 Michael Schmeja 
Integrating comments from Ethics Review and 
Quality check 



 

 

 

 

 

PU — PUBLIC 

D6.3 – AI IN FUTURE METRO OPERATIONS  

    

2 

 

E 

APPROVED FOR SUBMISSION BY  

Name Organisation Approval date 

Pietro De Vito STAM 13/06/2025 

  



 

 

 

 

 

PU — PUBLIC 

D6.3 – AI IN FUTURE METRO OPERATIONS  

    

3 

 

E 

LEGAL DISCLAIMER 

This project has been funded by the European Union’s Horizon Europe research and innovation 

programme under grant agreement No. 101177985. UK participants in this project are funded by the 

UKRI. Views and opinions expressed are however those of the author(s) only and do not necessarily 

reflect those of the European Union. Neither the European Union nor the granting authority can be held 

responsible for them. The information in this document is provided “as is”, and no guarantee or warranty 

is given that it is fit for any specific purpose. The Nexus project Consortium members shall have no 

liability for damages of any kind including without limitation direct, special, indirect, or consequential 

damages that may result from the use of these materials subject to any liability which is mandatory due 

to applicable law. 

Copyright © 2024 – NEXUS and its beneficiaries. All rights reserved. Licensed to Europe’s Rail Joint 

Undertaking under conditions. 

  



 

 

 

 

 

PU — PUBLIC 

D6.3 – AI IN FUTURE METRO OPERATIONS  

    

4 

 

E 

Table of contents 

Table of contents ................................................................................................................................ IV 

List of figures ..................................................................................................................................... VII 

List of tables ....................................................................................................................................... VII 

Executive summary ............................................................................................................................ IX 

KEYWORDS ......................................................................................................................................... IX 

1 Introduction .................................................................................................................................. 12 

1.1 NEXUS PROJECT ..................................................................................................................... 12 
1.2 PURPOSE OF THE DELIVERABLE ................................................................................................. 12 
1.3 STRUCTURE OF THE DELIVERABLE .............................................................................................. 12 

2 Foundations ................................................................................................................................. 14 

2.1 DATA SCIENCE.......................................................................................................................... 14 
2.2 MACHINE LEARNING (ML) AND ARTIFICIAL INTELLIGENCE (AI) ....................................................... 17 

2.2.1 Overview .......................................................................................................................... 17 
2.2.2 Algorithms ........................................................................................................................ 18 

2.3 EUROPE’S PERSPECTIVE ON AI AND DATA-BASED APPLICATIONS .................................................. 22 
2.4 METRO OPERATIONS................................................................................................................. 23 

3 AI in Metro operations ................................................................................................................. 26 

3.1 METRO OPERATIONS & AI: REPORTS ......................................................................................... 26 
3.1.1 Artificial intelligence in public transport (UITP Report) .................................................... 26 
3.1.2 Artificial Intelligence in mass public transport (UITP Report) .......................................... 29 
3.1.3 The journey toward AI-enabled railway companies (McKinsey and UIC 2024) .............. 32 

3.2 METRO OPERATIONS & AI: AN INDUSTRIAL STATUS QUO ............................................................ 37 
3.2.1 AI For TCMS SYSTEMS ................................................................................................. 40 
3.2.2 AI For CBTC SYSTEMS .................................................................................................. 40 
3.2.3 AI For PREDICTIVE MAINTENANCE ............................................................................. 41 
3.2.4 Summary ......................................................................................................................... 44 

3.3 METRO OPERATIONS AND AI: INSIGHTS FROM EXPERTS WORKSHOPS ......................................... 44 
3.3.1 WORKSHOP 26 MARCH 2025 in Vienna ....................................................................... 44 

3.3.1.1 General Discussions on adaptability analysis ........................................................................... 44 
3.3.1.2 Work session – AI and Data Science Implementation in Metro Operations .............................. 45 

3.3.2 Partner WORKSHOP 22 April 2025 in Graz ................................................................... 47 
3.3.2.1 Workshop goals ......................................................................................................................... 47 
3.3.2.2 Workshop content ..................................................................................................................... 47 
3.3.2.3 Workshop results and next steps .............................................................................................. 47 

4 Deep dive: AI in specific use cases for future Metro Operations ........................................... 48 

4.1 PREDICTION OF CROWDING BASED ON EXOGENOUS DATA SOURCES ......................................... 48 



 

 

 

 

 

PU — PUBLIC 

D6.3 – AI IN FUTURE METRO OPERATIONS  

    

5 

 

E 

4.1.1 Classical methods ........................................................................................................... 49 
4.1.2 Neural Networks .............................................................................................................. 49 
4.1.3 Other Methods ................................................................................................................. 51 

4.2 DEMAND FORECASTING IN METRO OPERATIONS ......................................................................... 51 
4.2.1 Classification of methods used in Urban rail demand forecasting .................................. 51 
4.2.2 Statistical method of Demand forecasting ....................................................................... 53 
4.2.3 Artificial Intelligence (AI) in Demand forecasting ............................................................. 55 
4.2.4 Summary ......................................................................................................................... 57 

4.3 TIMETABLE CREATION SUPPORT USING GTFS FEEDS ................................................................ 57 
4.3.1 Background ..................................................................................................................... 57 
4.3.2 Overview of Timetable Creation using GTFS Feeds ....................................................... 58 
4.3.3 Tactical Planning using GTFS Data ................................................................................ 60 
4.3.4 GTFS Data enhancing Frequency of Service ................................................................. 62 
4.3.5 Summary ......................................................................................................................... 64 

4.4 ANOMALY DETECTION ............................................................................................................... 64 
4.4.1 Background ..................................................................................................................... 64 
4.4.2 Uncleanliness Detection in Vehicle Interior ..................................................................... 65 

4.4.2.1 Convolutional Neural Networks ................................................................................................. 65 
4.4.2.2 Residual Neural Networks ......................................................................................................... 67 
4.4.2.3 YOU ONLY LOOK ONCE Architecture ..................................................................................... 67 
4.4.2.4 Generalization, Feature Maps, Transfer Learning and Few/Zero Shot Learning ....................... 67 

5 NEXUS Data Science and AI Use-Case Concepts .................................................................... 69 

5.1 PREDICTION OF CROWDING BASED ON EXOGENOUS DATA SOURCES .......................................... 70 
5.1.1 Genoa Metro System description .................................................................................... 70 
5.1.2 Use Case Description ...................................................................................................... 71 

5.1.2.1 Specific Objectives .................................................................................................................... 72 
5.1.2.2 Data Sources and Integration .................................................................................................... 72 
5.1.2.3 Development Methodology ........................................................................................................ 72 

5.2 AI AND DATA SCIENCE USE CASE FOR DEMAND FORECASTING DURING NETWORK EXPANSION IN 

WEST MIDLANDS METRO SERVICE, BIRMINGHAM .................................................................................. 73 
5.2.1 Motivation ........................................................................................................................ 73 
5.2.2 Problem Definition Case Study – West Midlands Metro ................................................. 74 
5.2.3 Proposed AI / Data Science Approach ............................................................................ 75 

5.2.3.1 Data Requirements ................................................................................................................... 76 
5.2.3.2 Data Sources ............................................................................................................................. 76 

5.3 TIMETABLE CREATION USING GTFS FEEDS ............................................................................... 77 
5.3.1 Overview .......................................................................................................................... 77 
5.3.2 Standardisation................................................................................................................ 77 
5.3.3 Real-Time Information ..................................................................................................... 78 
5.3.4 Strategic Planning & Modelling ....................................................................................... 79 
5.3.5 Summary ......................................................................................................................... 80 

5.4 ANOMALY DETECTION APPLIED ON METRO OPERATION ............................................................... 81 
5.4.1 Uncleanliness Detection In Vehicle Interior ..................................................................... 82 
5.4.2 Advantages of Using Pretrained Models ......................................................................... 82 



 

 

 

 

 

PU — PUBLIC 

D6.3 – AI IN FUTURE METRO OPERATIONS  

    

6 

 

E 

5.4.3 Transfer Learning ............................................................................................................ 83 

6 Good Practices ............................................................................................................................. 87 

6.1 WHAT WORKS: BEST PRACTICES IN AI-DRIVEN CROWD FORECASTING ....................................... 87 
6.1.1 Leveraging Heterogeneous and Exogenous Data .......................................................... 87 
6.1.2 Advanced AI Models: Hybrid Neural Networks ............................................................... 87 
6.1.3 Station-Specific Customization and Scalability ............................................................... 88 

6.2 WHAT DOESN’T WORK: CURRENT LIMITATIONS AND GAPS .......................................................... 88 
6.3 GDPR, THE AI ACT, AND LEGAL-ETHICAL CONSIDERATIONS ....................................................... 89 

6.3.1 Data Privacy, Pseudonymization, and the Challenge of ‘Personal Data’........................ 89 
6.3.2 Automated Decision-Making, Human Oversight, and the Right to Explanation .............. 90 
6.3.3 Fairness, Non-Discrimination, and Urban Equity ............................................................ 91 
6.3.4 Accountability, Documentation, and Regulatory Readiness ........................................... 91 

7 Conclusion and Outlook ............................................................................................................. 92 

8 REFERENCES .............................................................................................................................. 94 

9 Annex .......................................................................................................................................... 103 

MARKET RESEARCH ON AI IN METRO BUSINESS ................................................................................... 103 

  



 

 

 

 

 

PU — PUBLIC 

D6.3 – AI IN FUTURE METRO OPERATIONS  

    

7 

 

E 

List of figures 

Figure 1: Data Science Process (Source: Hadley et al. 2023) 15 

Figure 2: Mobility Data Science Process (Source: Stocker et al. 2024) 16 

Figure 3: AI use cases in rail industry (Source: McKinsey and UIC 2024) 33 

Figure 4: From Data Collection to predictive maintenance (Source: Siemens 2025) 42 

Figure 5: Siemens VEMS Solutions for Data Collection (Source: Siemens 2025) 43 

Figure 6: Classification of methods used in Urban rail demand forecasting (Source: Fang et.al 2019)

 53 

Figure 7: Convolutional Layer (Source: Wikimedia Conv layer.png 2025) 66 

Figure 8: Layer Visualization (Source: Chollet F. 2016) 66 

Figure 9: Feature Learning Diagram (Source: Wikimedia Feature Learning Diagram 2025) 68 

Figure 10: Map of the Genoa subway system (Source AMT 2025) 71 

Figure 11: Metro expansion map (Source: Metro Alliance 2023) 75 

Figure 12: New ML / AI Paradigm (Source: Virtual Vehicle 2025) 83 

Figure 13: Image Classification with pretrained Networks (Source: Virtual Vehicle 2025) 84 

Figure 15: Transfer Function applied on Training Dataset; (Source: Hossain Y. et al. 2021 and Faizal 

K. 2023) 85 

Figure 16: Image Classification - preliminary Results of Uncleanness Detection (Source: Instagram 

2025) 86 

 

List of tables 

Table 1: AI Use Cases (Source: UITP 2025) 28 

Table 2: AI Use Cases (Source: UITP 2018) 31 

Table 3: AI Use Cases (Source: MCKINSEY AND UIC 2024) 35 

Table 4: AI Use Cases from Industry perspective (Source: Siemens 2025) 39 

Table 5: Classification of Demand Forecasting (Source: Feng et. al 2019) 52 

Table 6: Summary of Studies of Traditional Ways for Demand Forecasting in Metro Operations (Source: 

AU 2025) 54 



 

 

 

 

 

PU — PUBLIC 

D6.3 – AI IN FUTURE METRO OPERATIONS  

    

8 

 

E 

Table 7: Summary of research on the use of AI for Demand Forecasting in Metro Operations (Source: 

AU 2025) 56 

  



 

 

 

 

 

PU — PUBLIC 

D6.3 – AI IN FUTURE METRO OPERATIONS  

    

9 

 

E 

Executive summary  

This deliverable summarizes the outcomes of Task 6.1 and provides a comprehensive review of the 

current landscape of Data Science, Machine Learning (ML), and Artificial Intelligence (AI) applications 

in the context of future metro operations. It introduces and contextualizes the foundational concepts of 

pillars of Work Package 6 — and explores the anticipated impact of the European Union AI Act on the 

development and deployment of AI-related use cases within this domain, as outlined in Section 2. 

Drawing on extensive desktop research, the deliverable reviews a curated selection of key industry 

reports and publications focused on the role of AI and data science in public transport. It identifies and 

analyses relevant trends, existing applications, and use cases that have emerged in the sector. 

Furthermore, it examines the current state-of-the-art in metro operations and AI integration from the 

perspective of a train manufacturer, offering insights into ongoing innovation and technological 

advancements. This analysis is complemented by the findings of two industrial workshops — one 

conducted with a train operator and the other with several European metro operators — which provided 

practical, real-world perspectives and industry needs related to AI implementation (as covered in 

Section 3). 

Building on this foundation, the deliverable provides a detailed examination of four representative AI 

use cases in metro operations: crowding prediction, demand forecasting, timetable creation support, 

and anomaly detection, with a specific example focused on uncleanliness detection. These use cases, 

grounded in existing academic and industry literature, illustrate the potential of AI technologies to 

enhance operational efficiency, passenger experience, and service reliability (Section 4). To move from 

concept to practice, these use cases are further developed through detailed implementation concepts, 

considering architectures, data requirements, technical challenges, and potential integration pathways 

(Section 5).  

Finally, the deliverable concludes with a synthesis of lessons learned, highlighting best practices for 

successful AI adoption in metro systems and identifying key technical, organizational, and regulatory 

challenges that must be addressed to ensure effective deployment (Section 6). 

 

KEYWORDS  

Machine Learning (ML), Artificial Intelligence (AI), Data Science, Metro Operations 
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1 INTRODUCTION 

1.1 NEXUS PROJECT  

The project Next-gen technologies for enhanced metro operation (NEXUS) is a Horizon Europe 

project running from 1 October 2024 to 30 September 2026 and deployed by a consortium of 13 

partners. The objective of the NEXUS project is to establish an innovative benchmark, addressing 

crucial challenges and guiding European metros toward transformative futures. Through optimization, 

analysis, energy and service efficiency, NEXUS aspires to pioneer innovative solutions in 2 European 

cities (Genoa, Italy and Sofia, Bulgaria) for the urban and metro transport of the future. 

1.2 PURPOSE OF THE DELIVERABLE 

The integration of AI, IoT, and Big Data is poised to revolutionize metro systems, transforming urban 

transportation into a more intelligent, efficient, and sustainable mode of mobility. These technologies 

will drive automation, optimize operational workflows, and enhance real-time decision-making, creating 

safer, more reliable, and seamlessly connected metro networks. By harnessing the power of AI-driven 

analytics, IoT-enabled connectivity, and Big Data insights, metro systems can not only improve 

operational efficiency but also offer enhanced safety, sustainability, and a better experience for 

passengers.  

This document marks the first deliverable of Work Package 6 (WP6) and presents the findings of Task 

6.1, titled "Deep Dive – Data Science and AI in Future Metro Operations." It provides a thorough review 

of the current landscape of AI, IoT, and Big Data applications within the context of future metro 

operations. As the transportation sector faces increasing demands for smarter, more adaptable 

infrastructure, understanding how AI and data science can drive metro systems forward is crucial. The 

deliverable aims to provide readers with the foundational knowledge necessary to understand the 

transformative potential of these technologies and their real-world applications. 

The primary goal of this deliverable is to equip readers with key insights into future metro operations, 

specifically focusing on how AI and data science can be leveraged to enhance system performance. 

It explores relevant use cases and offers practical implementation guidelines to support the integration 

of these cutting-edge technologies into metro networks. Additionally, the document outlines the data 

science and AI demonstrators that will be developed and delivered throughout the project, setting the 

stage for tangible outcomes that can be applied in real-world metro systems. 

1.3 STRUCTURE OF THE DELIVERABLE  

This deliverable is structured as follows: 

• Section 2 explores the foundations of (1) data science, (2) machine learning (ML), and AI, as 

well as (3) metro operations and outlines a section on European’s approach on implementing 

AI solutions. 
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• Section 3 presents the state of the art and emerging trends in AI and data science for future 

metro systems, based on studies conducted by industry experts and analysts in the 

transportation sector, along with a comprehensive list of key use cases. 

• Section 4 presents a deep dive for selected AI use cases on future metro operations, expanding 

the list of identified use cases and defining the scope for the demonstrator applications within 

the WP. 

• Section 5 presents a more in-depth examination of NEXUS AI use cases, providing insights 

into their technical aspects and potential challenges for future implementation. 

• Section 6 discusses best practices in line with industrial standards for metro operations, 

ensuring that the integration of these technologies is aligned with the highest operational 

standards.  
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2 FOUNDATIONS 

2.1 DATA SCIENCE 

The widespread adoption of digital technologies, both across various sectors and specifically within 

metro operations, generates vast amounts of data that can be leveraged to significantly enhance 

operational efficiency and overall performance. When properly analysed, this data becomes a valuable 

resource, enabling better decision-making and the optimization of metro system operations.  

Data science is an interdisciplinary field that merges principles from mathematics, statistics, AI, and 

computer engineering to analyse (large) datasets and extract meaningful insights. It applies scientific 

methods, processes, algorithms, and systems to interpret real-world phenomena through data, while 

also integrating domain expertise from fields like natural sciences, information technology, and mobility 

and transport.  

As a discipline, data science is focused on developing innovative approaches and methodologies, which 

are validated through the analysis of real-world data. It emphasizes the extraction of actionable insights 

from both structured and unstructured data sources, addressing complex challenges encountered in 

dynamic, large-scale environments. This is especially relevant in the context of mobility and transport, 

where the volume of data generated by sensors, vehicles, infrastructure, and passengers requires 

advanced analytical techniques. 

For future metro systems, data science enables the integration of these diverse data streams to 

enhance predictive analytics, optimize resource allocation, and increase system reliability. Moreover, 

the insights derived from these analyses can drive innovations in passenger experience, safety 

measures, and environmental sustainability. By fully leveraging the power of data science, metro 

systems can evolve into more adaptive, efficient, and responsive entities that better meet the needs of 

both passengers and operators alike.  

Recent research has introduced terms such as urban analytics (e.g., Batty, 2019; Kand & Batty, 2019), 

transport data science, and mobility data science (e.g., Mokbel et al., 2023; Mokbel et al., 2022; Stocker 

et al., 2024) to highlight the synergies between data science and the mobility and transport domains. 

These concepts underscore the growing potential to apply advanced data analysis techniques to 

optimize urban mobility systems, as well as to enhance transportation planning, management, and 

decision-making.  

In general, data science projects follow a straightforward process, as illustrated in the Figure 1 below, 

beginning with data import (ingestion) and culminating in the communication of results.  
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Figure 1: Data Science Process (Source: Hadley et al. 2023) 

 

In the first step, the data provided (e.g., by metro operators) must be imported into an analysis tool. The 

next step involves transforming this data into a "tidy" format, where each column represents a variable, 

and each row represents an observation. This "tidy" format makes it easier to address questions from 

the use cases effectively. After discussions with use case partners have provided a rough idea of the 

data analysis approach, the data must be further transformed into an appropriate analytical structure. 

This includes tasks like combining tables, filtering and selecting data, and performing calculations. 

Additionally, focusing the data on particularly relevant areas is crucial. New variables are created, and 

summary statistics are calculated to gain a deeper understanding of the data. Once the direction of the 

analysis is defined, two essential tools help to develop a clearer understanding: visualization and 

modelling. Effective visualizations can uncover unexpected patterns and relationships, prompting new 

questions or indicating the need for more data. Models serve as complementary tools to exploratory 

visualizations. Once the questions to be answered are clearly defined, models can be built to address 

them. Finally, the results are communicated to stakeholders, and the findings are validated against their 

expectations.  

Based on data science processes, such as those introduced by Pfister and Blitzstein (2016) from 

Harvard University, or other process models like CRISP-DM (Chapman et al. 1999), Mobility Data 

Science suggests a framework for generating data-driven applications (“digital mobility services”), as 

illustrated in the Figure 2 below. This approach typically involves the five steps (1) asking questions, 

(2) collecting data, (3) examining data, (4) modelling data, and (5) communicating results. A Mobility 

Data Science framework (Stocker et al., 2024) provides a structure for developing data-driven products 

for future metro systems. It consists of three key building blocks: mobility and transport artifacts (e.g., 

passengers, trains, train stations), the mobility data science approach (the process methodology), and 

digitized mobility services (the applications).   
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Figure 2: Mobility Data Science Process (Source: Stocker et al. 2024) 

 

Mobility and transport artifacts generate vast amounts of data. For instance, passengers generate data 

directly by purchasing tickets or moving through stations (via their smartphones), or indirectly through 

monitoring systems such as cameras or by entering and exiting gates. The data collected from 
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passengers not only provides insights into individual movement patterns but also allows metro 

operators to anticipate traffic flow, improve station management, and optimize passenger services. 

Trains produce substantial data during their operation, which is captured both in static timetables and 

dynamically through the monitoring of their behaviour, such as location, speed, delays, and energy 

consumption. This dynamic data provides real-time insights into train performance, enabling predictive 

maintenance, route optimization, and overall service reliability. The infrastructure, including tracks, 

metro stations, and other facilities, also generates data through sensors or cameras. For example, 

sensors can detect wear and tear on tracks, monitor air quality in stations, or assess passenger traffic 

within the system. This comprehensive data collection across multiple sources offers a detailed and 

real-time picture of the entire metro ecosystem.  

This data feeds into algorithms, which are a critical component of the data science approach, spanning 

from formulating questions to communicating results. Algorithms process and analyse the data to 

uncover hidden patterns, make predictions, and guide decision-making processes. By leveraging these 

insights, metro systems can improve operational efficiency, enhance safety, and provide a better overall 

experience for passengers.   

The insights extracted from this data are then utilized for digital mobility services (data-based 

applications) to improve future metro service operations, facilitating innovative applications such as in-

cabin soling detection, which enhances passenger safety by detecting and alerting operators about 

unwanted objects or conditions, or flexible timetable creation and optimization using GTFS (General 

Transit Feed Specification) data. The integration of dynamic scheduling and passenger demand 

patterns allows metro systems to adjust their services in real-time, improving efficiency and reducing 

congestion.  

AI and ML play pivotal roles in the field of data science, enabling the analysis of large, complex datasets 

and the automation of decision-making processes. AI encompasses a range of technologies designed 

to simulate human intelligence and problem-solving abilities, while ML allows systems to learn from 

data and improve over time. Together, they enhance the capabilities of traditional data analysis 

methods, enabling more accurate predictions, identifying new trends, and optimizing operational 

decision-making. 

 

2.2 MACHINE LEARNING (ML) AND ARTIFICIAL 

INTELLIGENCE (AI)  

2.2.1 OVERVIEW 

ML and AI revolutionized how complex systems are modelled and analysed. Thanks to their ability to 

analyse large sets of data, ML models and AI can recognize complex patterns, analyse processes, 

optimize decisions, and improve systems efficiency.  

AI describes computer systems' ability to perform tasks that normally require human intelligence. These 

include learning, reasoning, solving problems, understanding the surrounding environment, and making 

decisions. AI is a computer science research area focused on developing and examining technologies 

that allow machines to sense their surroundings, apply intelligence and learning, and take appropriate 

actions to successfully reach specific objectives (Russell & Norvig, 2020). ML is a subset of AI that uses 
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algorithms to analyse and uncover the patterns and relationships within data and information (Awad & 

Khanna, 2015). 

ML and AI techniques do not require any a-priori knowledge of the system as it learns the relationship 

between input and output directly from the available data, for these reasons they are considered data-

driven. The development (i.e., learning phase) of a data-driven model typically demands a substantial 

amount of historical data and significant computational resources. Conversely, the prediction phase 

(i.e., forward phase) is often computationally efficient. Although these models tend to achieve high 

overall accuracy, they may occasionally generate physically unrealistic predictions under certain 

conditions. 

To generate predictions, ML algorithms construct a mathematical model capable of recognizing these 

patterns. Specifically, ML algorithms can adopt three primary learning approaches: 

● Supervised Learning: This method utilizes labelled input data (i.e., training data) to teach 

models how to achieve the desired output (Hastie, Tibshirani, & Friedman, 2009). The training 

dataset includes both inputs and correct outputs, allowing the model to learn over time. The 

process continues until the model reaches a satisfactory level of accuracy on the training data. 

● Unsupervised Learning: In this approach, models work with unlabelled input data, meaning 

no predefined labels are assigned to the samples (Ghahramani, 2003). The model attempts to 

identify hidden structures and patterns within the dataset without external guidance, grouping 

data based on similarities and representing it in a compressed format. Common applications 

include clustering, dimensionality reduction, and association rule learning, such as the A-priori 

algorithm and k-means clustering. 

● Semi-supervised Learning: This technique leverages datasets that contain a small portion of 

labelled data alongside a large volume of unlabelled data (Zhu & Goldberg, 2009). The model 

aims to achieve the desired output while also learning the underlying structures to better 

organize the data. Semi-supervised learning algorithms extend other flexible methods by 

making assumptions about how to handle unlabelled data, such as the continuity assumption 

and cluster assumption. 

Classification and regression (Shalev-Shwartz & Ben-David, 2014) are the two primary predictive 

problems that can be approached using supervised, unsupervised, or semi-supervised methods (Zaki 

& Meira Jr, 2019). The key distinction between classification and regression lies in what the model is 

designed to predict: classification focuses on assigning a label, while regression involves predicting a 

numerical value. 

More specifically, classification is the process of approximating a mapping function that links input 

variables to discrete output categories (i.e., labels or classes). In this case, the model determines which 

class an observation belongs to, with no concept of distance between categories. 

2.2.2 ALGORITHMS 

Beyond learning styles and the types of problems they address, ML algorithms can also be categorized 

based on their underlying principles and operational similarities. The following list groups algorithms 

according to how they function: 
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Regression Algorithms: These algorithms operate by identifying relationships between variables 

(Chatterjee & Hadi, 2015). Such relationships are represented through an equation or model that links 

the dependent variable (i.e., response) to one or more independent variables (i.e., predictors). The 

model is then iteratively improved by minimizing the error in its predictions (Menard, 2002; Weisberg, 

2005). Some of the most used regression algorithms include: 

● Linear Regression; 

● Logistic Regression; 

● Ordinary Least Squares Regression; 

● Stepwise Regression; 

● Multivariate Adaptive Regression Splines. 

Regularization Algorithms: Regularization is an ML technique, primarily used in regression 

algorithms, that helps control model complexity by reducing the magnitude of feature coefficients 

(Argyriou, Evgeniou, & Pontil, 2008; Evgeniou & Pontil, 2007). Simplifying the model mitigates the risk 

of overfitting, while shrinking the coefficients also reduces computational costs (Menard, 2002). Some 

of the most widely used regularization algorithms include: 

● (Kernelized) Ridge Regression; 

● Least Absolute Shrinkage and Selection Operator; 

● Elastic Net; 

● Least-Angle Regression. 

Decision Tree Algorithms: These algorithms utilize a decision tree as a predictive model (Rokach & 

Maimon, 2007). In this structure, the branches represent observations about an item, while the leaves 

indicate the item's target value (Larose & Larose, 2014). Decision tree algorithms can be applied to 

both classification and regression problems (Safavian & Landgrebe, 1991). One of their key advantages 

is their high interpretability (Molnar, 2020). Some of the most widely used decision tree algorithms 

include: 

● Classification Trees; 

● Regression Trees; 

● Iterative Dichotomiser 3; 

● Chi-squared Automatic Interaction Detection; 

● Decision Stump; 

● Conditional Decision Trees. 

Instance-based Algorithms: These algorithms make predictions by comparing new instances with 

previously stored training instances (Daelemans, Van den Bosch, & others, 2005). They build a 

database of example data, which is then used to find similarities and make predictions (Russell & 

Norvig, 2003). Due to this approach, they are also referred to as memory-based learning. Some of the 

most used instance-based algorithms include: 

● k-Nearest Neighbour; 

● Learning Vector Quantization; 

● Locally Weighted Learning; 

● Self-Organizing Maps. 
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Clustering Algorithms: Clustering involves dividing a dataset into multiple groups, ensuring that data 

points within the same group are more similar to each other than to those in different groups (Gan, Ma, 

& Wu, 2020). These algorithms are commonly used in unsupervised learning, as they focus on 

identifying structures within unlabelled data (Berkhin, 2006). Some of the most widely used clustering 

algorithms include: 

● Hierarchical Clustering; 

● K-Means; 

● K-Medians; 

● Expectation Maximization; 

● Spectral Clustering. 

Bayesian Algorithms: These algorithms construct ML models based on Bayes’ Theorem (Barber, 

2012). Their primary objective is to estimate the posterior distribution using the likelihood and prior 

distribution (Rasmussen, 2003). Some of the most used Bayesian algorithms include: 

● Naive Bayes; 

● Gaussian Naive Bayes; 

● Multinomial Naive Bayes; 

● Averaged One-Dependence Estimators; 

● Bayesian Network; 

● Bayesian Belief Network. 

Artificial Neural Network Algorithms: This category includes algorithms inspired by the biological 

neural networks found in animal brains (Amari & others, 2003; Bishop & others, 1995). Artificial neural 

networks can be applied to both classification and regression tasks, but they also form a vast subfield 

with numerous algorithms and variations (Yegnanarayana, 2009). Some of the most widely used neural 

network algorithms include: 

● Hopfield Networks; 

● Radial Basis Function Networks; 

● Perceptron Back-Propagation. 

Deep Learning Algorithms: This category includes artificial neural network algorithms, but unlike 

standard neural networks, the term “deep” refers to the presence of multiple layers within the network 

(LeCun, Bengio, & Hinton, 2015; Ngiam, et al., 2011). Deep learning algorithms operate on significantly 

larger and more complex neural architectures (Schmidhuber, 2015). Some of the most widely used 

deep learning algorithms include: 

● Deep Boltzmann Machine; 

● Convolutional Neural Networks; 

● Deep Belief Networks; 

● Stacked Auto-Encoders. 

Association Rule Learning Algorithms: These algorithms are primarily used to identify meaningful 

relationships between variables in large databases (Zhang & Zhang, 2003). More specifically, their 

objective is to discover strong rules within datasets by leveraging various interestingness measures (Al-
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Maolegi & Arkok, 2014; Zheng, Kohavi, & Mason, 2001). The three most widely used association rule 

learning algorithms are: 

● A-priori Algorithm; 

● Eclat Algorithm; 

● FP-growth Algorithm. 

Ensemble Algorithms: These algorithms focus on combining predictions from multiple weaker ML 

models to achieve more robust and accurate results (Bühlmann, 2012). Each model is trained 

independently, and their outputs are then aggregated to generate the final prediction (Dietterich, 2000; 

Zhang & Zhang, 2003). The key challenge lies in selecting the appropriate models and determining the 

best way to combine them. Some of the most commonly used and powerful ensemble algorithms 

include: 

● Random Forest; 

● Gradient Boosted Regression Trees; 

● Boosting; 

● AdaBoost; 

● Bagging; 

● Gradient Boosting Machines. 

Dimensionality Reduction Algorithms: These algorithms leverage the underlying structure of data to 

transition from a high-dimensional space to a lower-dimensional one while retaining essential properties 

of the original data (Sorzano, Vargas, & Montano, 2014; Van Der Maaten, Postma, Van den Herik, & 

others, 2009). They can be applied to both classification and regression problems. Some of the most 

commonly used dimensionality reduction algorithms include: 

● Principal Component Regression; 

● Linear Discriminant Analysis; 

● Quadratic Discriminant Analysis; 

● Mixture Discriminant Analysis; 

● Flexible Discriminant Analysis; 

● Principal Component Analysis; 

● Sammon Mapping. 

Novelty/Outlier/Anomaly Detection Algorithms: These algorithms focus on identifying new or 

unknown data that an ML system has not encountered during training (Miljković, 2010). Specifically, 

they detect outliers that deviate from the normal data distribution. Novelty detection is a critical 

challenge in classification systems and one of the most complex problems in ML, as it depends on the 

statistical properties of previously known information (Markou & Singh, 2003; Pimentel, Clifton, Clifton, 

& Tarassenko, 2014). Some of the most widely used novelty detection algorithms include: 

● k-Nearest Neighbour Data Description; 

● k-Nearest Neighbour Outlier Detection; 

● Local Outlier Factor; 

● Angle-Based Outlier Detection; 

● Support Vector Data Description; 



 

 

 

 

 

PU — PUBLIC 

D6.3 – AI IN FUTURE METRO OPERATIONS  

    

22 

 

E 

● Gaussian Data Description; 

● Parzen Window Data Description; 

● Local Correlation Integral. 

 

2.3 EUROPE’S PERSPECTIVE ON AI AND DATA-BASED 

APPLICATIONS 

Europe is taking a proactive and principled approach to artificial intelligence, seeking to balance 

innovation with fundamental rights and safety. The cornerstone of this effort is the EU AI Act (European 

Commission 2024; European Parliament 2024), the world’s first comprehensive regulation on AI, which 

classifies systems by risk level—from minimal to unacceptable. 

The purpose of the AI Act is to strengthen the internal market and encourage the development and 

adoption of human-centric, trustworthy artificial intelligence. At the same time, it aims to ensure a high 

level of protection for health, safety, fundamental rights—including those outlined in the EU Charter—

democracy, the rule of law, and the environment, by addressing potential risks associated with AI 

systems, while also fostering innovation. The Regulation sets out consistent rules across the EU for 

placing and using AI systems on the market, including restrictions on certain unacceptable practices 

and detailed requirements for high-risk systems. It also introduces transparency obligations, 

governance and enforcement mechanisms, and specific provisions for general-purpose AI models. To 

foster innovation, the Regulation includes supportive measures, especially for small and medium-sized 

enterprises and startups. 

Article 3 of the AI Act defines an AI system as:  

“AI system’ means a machine-based system that is designed to operate with varying levels of autonomy 

and that may exhibit adaptiveness after deployment, and that, for explicit or implicit objectives, infers, 

from the input it receives, how to generate outputs such as predictions, content, recommendations, or 

decisions that can influence physical or virtual environments” 

Given the broad scope of the EU AI Act’s definition, regulatory obligations are not solely determined by 

how AI is built, but rather by its intended use. This usage-based approach reflects the Act’s risk-based 

framework, where obligations increase with the potential impact on fundamental rights and safety. The 

European Law Institute (2024) offers a thoughtful and comprehensive response to the AI Act, 

highlighting both the strengths of this framework in promoting trustworthy AI and the challenges in its 

practical implementation across diverse sectors. 

Certain AI uses, like government-run social scoring, are outright prohibited for being incompatible with 

EU values. The EU AI Act bans all AI systems that pose a clear threat to the safety, livelihoods, and 

rights of individuals. It specifically prohibits eight practices, including harmful AI-based manipulation 

and deception, exploitation of vulnerabilities, social scoring, criminal offense risk prediction, untargeted 

scraping of internet or Closed-Circuit Television (CCTV) material to expand facial recognition 

databases, emotion recognition in workplaces and educational institutions, biometric categorization to 

deduce protected characteristics, and real-time remote biometric identification for law enforcement in 

public spaces. 
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AI use cases that can pose serious risks to health, safety or fundamental rights are classified as high-
risk. These high-risk use-cases include: 

• AI in critical infrastructure (e.g., transportation) that could threaten public health and safety. 

• AI in education systems affecting access to education and career progression (e.g., exam 
scoring). 

• AI safety components in products (e.g., robot-assisted surgery). 

• AI tools for employment, worker management, and self-employment (e.g., CV sorting for 

recruitment). 

• AI used in providing essential services (e.g., credit scoring affecting loan access). 

• AI systems for remote biometric identification, emotion recognition, and categorization (e.g., 

identifying shoplifters). 

• AI in law enforcement that could impact fundamental rights (e.g., evaluating evidence 

reliability). 

• AI in migration, asylum, and border control (e.g., visa application assessments). 

• AI in justice and democracy administration (e.g., preparing court rulings). 

High-risk AI systems must meet strict obligations before entering the market, including: 

• Comprehensive risk assessment and mitigation strategies. 

• High-quality datasets to minimize discriminatory outcomes. 

• Activity logging for traceability. 

• Detailed documentation for compliance assessment by authorities. 

• Clear information for system deployers. 

• Adequate human oversight measures. 

• Robustness, cybersecurity, and accuracy standards. 

High-risk AI applications—such as those in transportation and critical infrastructure—must comply with 

strict requirements for transparency, accountability, data governance, and human oversight. The EU’s 

framework promotes trustworthy AI, balancing innovation with the protection of fundamental rights. For 

railway and metro operators, this means that while many AI systems may be classified as minimal or 

limited risk, applications related to operational safety, predictive maintenance, surveillance, or 

workforce management are likely to fall into the high-risk category. These systems must therefore meet 

rigorous compliance standards under the AI Act. 

 

2.4 METRO OPERATIONS 

Metro operations encompass the systematic management and coordination of metro rail systems, 

which are crucial for maintaining continuous and efficient operations (Zhao et al., 2017). This 

encompasses a range of activities and components aimed at ensuring the safe movement of 

passengers and the seamless functioning of urban rail systems (Mehta et al., 2019).  

The efficiency and effectiveness of metro operations depend on a wide range of internal and external 

factors (Lobo & Couto, 2016; Mehta et al., 2019; Shahabi et al., 2021; Zhao et al., 2017). These internal 

and external factors are frequently referred to as the “foundations” of metro operations. They 

encompass the fundamental elements and principles that underpin the efficient and effective functioning 
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of metro systems. Summarizing and categorizing the findings of a comprehensive literature analysis 

investigating internal and external factors influencing metro operations conducted by Lobo and Couto 

(2016), these foundations include the following internal and external factors: 

• Socio- and Macroeconomic Factors: These include area, population density, average 

household size, unemployment rate, GDP per capita, and diesel pump price. These factors 

influence urban socioeconomic trends, which in turn affect metro operations. 

• Policies: The development of policies and actions aimed at promoting sustainability in urban 

transit, such as network expansions, fare subsidies, and the regulation of private car use, can 

either increase or decrease the demand for metro services. 

• Internal Production Factors: Key factors such as network length, number of stations, number 

of cars, and number of employees significantly impact the operations required to maintain metro 

services. These factors encompass both capital and labour inputs, whether available or 

desired. 

• Efficiency and Effectiveness: This involves the technical efficiency of the production process 

and the effectiveness in attracting users and meeting demand. 

As evidenced by the internal and external factors influencing metro systems and highlighted by several 

studies such as those by Castagna et al. (2024) and Mehta et al. (2019), each metro system has distinct 

requirements and necessitates different solutions. Consequently, metro operations must be adapted to 

the specific conditions relevant to their context to ensure operational efficiency. Nevertheless, research 

analyses conducted by Zhao et al. (2017) and Mehta et al. (2019)  identified several key elements that 

metro systems must fulfil to collectively contribute to their efficient and effective functioning. These 

foundational elements work together to create a reliable, efficient, and user-friendly metro system that 

meets the transportation needs of urban populations. These key elements include, but are not limited 

to: 

• Service Delivery and Timetabling: Scheduling and running trains to meet passenger demand. 

Ensuring timely and reliable service. Maintaining regular intervals between trains and 

minimizing waiting times.   

• Operations Control Centres (OCC): Command and control facilities for monitoring and 

managing the metro system. Coordinating normal and emergency operations. Making real-time 

decisions to maintain service continuity.  

• Maintenance and Infrastructure Management: Regular and preventive maintenance of 

trains, tracks, signalling systems, and infrastructure. Upgrading physical assets to ensure 

safety and reliability. Preventing disruptions and maintaining overall system quality 

• Safety and Security: Implementing measures to protect passengers and staff. Surveillance, 

emergency response plans, and safety protocols 

• Customer Service: Providing assistance to passengers. Handling inquiries. Ensuring a 

positive travel experience. 

• Revenue Management: Managing ticket sales, fare collection, and financial transactions. 

Optimizing income and reducing losses.  
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• Platform Assignment and Capacity Management: Allocating platforms for arriving and 

departing trains. Optimizing passenger flow and reducing congestion. Ensuring the system can 

handle expected passenger volume without overcrowding or underutilization. Planning for peak 

hours and adjusting services to meet demand.  

• Traffic and Passenger Flow Management: Monitoring and controlling the movement of trains 

and passengers. Preventing congestion and ensuring smooth operations. Using traffic 

management systems and real-time monitoring tools to reduce congestion and optimize system 

performance.  

• Energy Efficiency: Minimizing energy consumption through optimized train trajectories and 

timetables. Reducing operational costs and environmental impact. 

• Operational Research Techniques: Applying advanced algorithmic techniques and models. 

Optimizing timetabling, platform assignments, and crew scheduling. 

• Staff Training and Management: Training and managing the workforce. Including train 

operators, maintenance crews, and customer service personnel.  
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3 AI IN METRO OPERATIONS  

3.1 METRO OPERATIONS & AI: REPORTS  

This chapter presents a summary of desktop research conducted on the application of AI in metro 

operations. While the majority of studies and articles reviewed focus broadly on railway operations—

including metro systems—or on public transport more generally, many of the identified use cases and 

insights are highly relevant and applicable to NEXUS. 

Particularly noteworthy are three reports that provide valuable perspectives: 

• A knowledge brief from the International Association of Public Transport (UITP) on AI use cases 
“AI in Public Transport. How to use AI in urban mobility” (UITP 2025),  

• A report from the International Association of Public Transport (UITP) on AI use cases “Artificial 

Intelligence in mass public transport” (UITP 2018), and 

• A comprehensive analysis by McKinsey & Company in collaboration with the International 
Union of Railways (UIC) “The journey towards AI-enabled railway companies” (McKinsey and 
UIC. 2024). 

This section provides a summary of the UITP Knowledge Brief on Artificial Intelligence in public 

transport. 

3.1.1 ARTIFICIAL INTELLIGENCE IN PUBLIC TRANSPORT (UITP 

REPORT) 

The UITP Knowledge Brief offers an updated overview of AI applications in public transport for 2025, 

building on the foundational insights of the UITP’s 2017 report. This updated brief reflects the significant 

evolution of AI technologies and their growing integration into transport operations, with a focus on real-

world implementations shown though short case studies in the report.  

The brief outlines the primary uses of AI in public transport today, which focus largely on enhancing 

operational efficiency through data analysis, anomaly detection, and predictive maintenance. 

These applications help transport operators make more informed decisions, anticipate equipment 

failures, and optimize performance. 

It also highlights three key technological categories of AI applications that are shaping the sector: 

• Large Language Models (LLMs) – primarily used to power chatbots and virtual assistants, 

improving customer service through natural language processing and multilingual support. 

• AI-Driven Video Analytics – leveraging advanced image processing for applications such as 

crowd monitoring, behavioural analysis, and safety management. 

• Predictive Modelling – applied to forecast and address operational challenges, from passenger 

flow patterns to infrastructure wear and tear. 

The UITP Knowledge Brief highlights a series of LLM-based use cases. For customer assistance, 
LLMs are helping in a few keyways:  

• Text-to-speech engines are used to deliver clear spoken information to passengers.  
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• Digital sign language avatars convert text and spoken announcements into sign language and 

multiple written languages, helping passengers with hearing loss.  

• Chatbots are used to answer simple, common questions about public transport services. Some 

of these chatbots use a technique called retrieval-augmented generation (RAG), which makes 

their responses more accurate and useful. They also allow passengers to report incidents in 

real time.  

For staff support, LLMs are also being used: 

• Frontline workers can use AI-powered chatbots to submit support requests more easily. 

• Customer service centres are testing generative AI to improve chatbot functions and better 
support passenger inquiries. 

The UITP Knowledge Brief further highlights a range of AI-powered video analytics use cases in 
public transport, focused on improving safety, efficiency, and accessibility. 

• Safety and Driver Assistance: This use case involves advanced driver assistance systems 
on buses. It includes features like driver fatigue monitoring, blind spot detection, and a high-
capacity surveillance system. It also supports real-time seat availability displays that show 
upper-deck occupancy levels to passengers. 

• Railroad Crossing Safety and Intrusion Detection: AI video analytics help improve safety at 
railroad crossings by detecting trespassing and tunnel intrusions. The system flags violations 
and generates video clips of incidents for detailed review and enforcement. 

• Occupancy Monitoring: This use case uses real-time video from existing onboard cameras to 
estimate how full a bus is. The system classifies occupancy into five levels to help operators 
manage service levels and inform passengers. 

• Bus Lane and Parking Enforcement: AI-powered cameras monitor bus stops and bus-only 
lanes. When a vehicle is parked illegally, the system records a 10-second video, captures the 
license plate, and sends the footage—along with the time and location—to parking 
enforcement. 

• Fare Evasion Detection and Enforcement: Cameras at major urban stations are used to 
detect fare evasion. The system supports ticket inspectors with a mobile app that helps them 
identify and respond to fare evaders more effectively. 

• Guidance for Blind and Visually Impaired Users: A smartphone app uses video analytics to 
help visually impaired passengers locate nearby bus stops. It uses the phone’s camera and AI 
trained on a small image set to guide users to the correct location within the camera’s field of 
view. 

The UITP Knowledge Brief outlines several use cases where predictive modelling with AI is being 
applied. 

• AI for Driver Efficiency: This use case involves analysing on-vehicle telemetry data along with 
external factors like traffic, passenger load, and weather. AI is used to understand driving styles 
under different conditions, identify high-risk zones, detect recurring behaviors that may need 
attention, and support targeted driver training sessions. 

• Smart Charging in E-Bus Fleets: AI helps optimize when and how electric buses are charged. 
This system adjusts the charging schedule dynamically, ensuring it doesn’t disrupt operations 
while taking advantage of lower energy prices during off-peak hours. 

• Accurate Arrival Time Predictions: In this use case, AI and machine learning (ML) are used 
to predict vehicle arrival times with higher accuracy. These predictions can improve service 
reliability and passenger communication. 
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• AI-Based Mobility Forecasts: This approach involves developing traffic models based on 
individual travel behaviour. These models are combined with real-time data to provide more 
precise and responsive forecasts of demand and traffic conditions. 

• AI-Controlled Metro Ventilation: Ventilation in metro systems is essential for passenger 
comfort and air quality. In this use case, AI selects the best ventilation strategy in real time, 
based on factors like weather conditions, indoor and outdoor air quality, energy use, fan 
performance, and energy prices. 

The UITP Knowledge Brief highlights several key performance improvements driven by AI in different 

use cases across public transport operations. One of the notable achievements is a 13% increase in 

prediction accuracy for modelling demand and arrival times. his improvement enhances the reliability 

of service schedules and allows for better planning, benefiting both operators and passengers. 

Additionally, AI-powered driving assistance and training have resulted in a 40% reduction in improper 

vehicle use. By identifying risky driving behaviors and offering targeted training, AI is helping to enhance 

driver efficiency and safety. 

Table 1: AI Use Cases (Source: UITP 2025) 

AI APPLICATION USE CASE DESCRIPTION 

Large Language 
Models (LLMs) 

Pattern recognition 
for track conditions  

Deliver spoken information for better accessibility. 

Network capacity 
maximization  

Real-time condition 
monitoring  

Convert text and spoken announcements into sign 
language and written languages. 

Large Language 
Models (LLMs) 

Chatbots for 
customer assistance 

Answer simple queries and allow real-time incident 
reporting. 

Large Language 
Models (LLMs) 

AI-powered chatbots 
for staff support 

Allow frontline workers to submit support requests 
efficiently. 

Large Language 
Models (LLMs) 

Generative AI for 
customer service 

Enhances chatbot functions to improve passenger 
inquiry handling. 

AI-Driven Video 
Analytics 

Safety and Driver 
Assistance 

Monitors driver fatigue, blind spots, and provides 
seat availability in real-time. 

AI-Driven Video 
Analytics 

Railroad Crossing 
Safety and Intrusion 
Detection 

Detects trespassing and tunnel intrusions for better 
safety management. 

AI-Driven Video 
Analytics 

Occupancy 
Monitoring 

Estimates bus occupancy to manage service levels. 

AI-Driven Video 
Analytics 

Bus Lane and 
Parking Enforcement 

Monitors illegal parking, captures license plates, and 
sends data to enforcement. 

AI-Driven Video 
Analytics 

Fare Evasion 
Detection 

Monitors stations and supports ticket inspectors to 
identify fare evaders. 
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AI APPLICATION USE CASE DESCRIPTION 

AI-Driven Video 
Analytics 

Guidance for Blind 
and Visually 
Impaired Users 

Guides visually impaired passengers to bus stops 
using smartphones and AI. 

Predictive 
Modelling 

Driver Efficiency Analyses driving styles using telemetry data to 
improve safety and training. 

Predictive 
Modelling 

Smart Charging in E-
Bus Fleets 

Optimizes e-bus charging during off-peak hours to 
reduce energy costs. 

Predictive 
Modelling 

Accurate Arrival 
Time Predictions 

Uses AI/ML to predict vehicle arrival times more 
accurately. 

Predictive 
Modelling 

AI-Based Mobility 
Forecasts 

Combines real-time data with individual travel 
behaviour to forecast mobility demand. 

Predictive 
Modelling 

AI-Controlled Metro 
Ventilation 

Adjusts metro ventilation based on weather, air 
quality, and energy use for improved passenger 
comfort. 

 

3.1.2 ARTIFICIAL INTELLIGENCE IN MASS PUBLIC TRANSPORT 

(UITP REPORT) 

The 2018 UITP Report on Artificial Intelligence in Mass Public Transportation (UITP 2018) highlights 

several key AI applications in the public transport sector. These applications include (1) real-time 

operations management, (2) customer analytics, (3) predictive maintenance, and (4) network planning 

and route design. Each of these areas is demonstrating the transformative potential of AI to improve 

efficiency, enhance customer experiences, and optimize service delivery. 

Additionally, the report identifies five main challenges faced by public transport authorities in adopting 

AI. These challenges are: 

• Improvement of data quality, ensuring that the data used by AI systems is accurate, reliable, 

and actionable. 

• Building capacity and knowledge in AI deployment, to enable operators to effectively integrate 

AI solutions into existing systems. 

• Overcoming data privacy concerns, ensuring that AI applications comply with regulations and 

protect passenger data. 

• Meeting the requirements of data volume for AI, as AI systems often require large quantities of 

data to function optimally. 

• Establishing commitment from top management for cultural and process changes, ensuring 

that AI adoption is supported at all levels of the organization. 

The report also collected in-depth information on 17 AI use cases across four key areas in the public 

transport sector, demonstrating how AI is gaining traction and driving improvements. 
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AI for Customer Excellence 

The AI for Customer Excellence category focuses on improving passenger experiences through 

innovative AI applications. One example is the MTR Chatbot, which assists passengers by answering 

inquiries and providing real-time updates about services. Similarly, TfL TravelBot is a chatbot used by 

Transport for London (TfL) to offer travel information and service updates to passengers. Another 

notable application is the JR East-Hitachi Communication Robot, a robot designed to help passengers 

with information and guidance at stations, improving accessibility and convenience. Additionally, the JR 

East-IBM Call Centre Support System uses AI to enhance customer support by improving response 

times and the efficiency of call centre operations. 

AI for Operational Excellence 

The AI for Operational Excellence category focuses on improving the efficiency of transport operations 

through advanced AI technologies. One application, the RTRI Predicting Method of Train Delay and 

Train Congestion, uses AI to predict delays and congestion, allowing for better management of train 

schedules. SBB Reinforcement Learning for Railway Dispatching applies reinforcement learning to 

optimize the dispatching of trains, improving operational efficiency. Similarly, NEC Predictive 

Optimization for Bus Operations uses AI to predict and optimize bus operations, enhancing route 

efficiency and scheduling. 

In Shenzhen, the Shenzhen Bus Group-Haylion Technologies ‘Alphaba’ Intelligent Driving Public Bus 

Trial explores the use of AI-powered intelligent driving for buses, enhancing safety and efficiency. RATP 

Dev ‘Interstellar’ Mass Transit Data Analytics System is another example, using data analytics to 

optimize mass transit operations. Siemens Mobility Data Analytics for Mobility Demand Prediction uses 

AI to predict mobility demand and optimize public transport routes accordingly. 

Further examples include the Axon Vibe-SBB Smart Travel Assistant and Travel Cockpit, which 

leverages AI to enhance passenger and operational management, and Alibaba ET City Brain, a smart 

city initiative using AI to manage urban transportation networks. Lastly, the LTA Automatic Traffic 

Monitoring on Drone Images system, implemented by the Land Transport Authority in Singapore, uses 

drones to monitor traffic and optimize traffic flow. 

AI for Engineering Excellence 

The AI for Engineering Excellence category focuses on improving infrastructure and engineering 

operations using AI. One example is the RTRI Automatic Tunnel Lining Crack Detection, which uses AI 

to detect cracks in tunnel linings, ensuring the integrity and safety of critical infrastructure. Another 

application is the Yutong Bus-Shanghai Bus Group Intelligent Charging Control System, which uses AI 

to manage and optimize the charging systems of electric buses, improving efficiency and reducing 

downtime. 

AI for Safety and Security Management 

The AI for Safety and Security Management category focuses on enhancing safety and security within 

public transport systems. One example is SMRT Buses ‘ProLearn’ Data Analytics and Accident Risk 

Prediction, which uses data analytics to predict and reduce the risk of accidents in bus operations, 

helping to improve overall safety. Another example is the AWAAIT-FGC ‘Detector’ Fraud Detection 

System, an AI-driven solution designed to detect and prevent fraud in fare collection, ensuring integrity 

and reducing financial losses. 
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Table 2: AI Use Cases (Source: UITP 2018) 

AI APPLICATION USE CASE DESCRIPTION 

AI for Customer 
Excellence 

Chatbot A chatbot assisting passengers with inquiries and 
providing real-time service updates. 

AI for Customer 
Excellence 

TravelBot A chatbot offering travel information and service 
updates to passengers. 

AI for Customer 
Excellence 

Communication 
Robot 

A robot designed to help passengers with 
information and guidance at stations. 

AI for Customer 
Excellence 

Call Centre Support  An AI-powered system that enhances customer 
support and improves call center response times. 

AI for Operational 
Excellence 

Predicting Train 
Delay and 
Congestion 

AI predicts delays and congestion, improving train 
schedule management. 

AI for Operational 
Excellence 

Railway Dispatching Reinforcement learning is applied to optimize the 
dispatching of trains, improving operational 
efficiency. 

AI for Operational 
Excellence 

Optimization for Bus 
Operations 

AI predicts and optimizes bus operations, improving 
route efficiency and scheduling. 

AI for Operational 
Excellence 

Intelligent Driving 
Public Bus Trial 

AI-powered intelligent driving trial for buses, 
enhancing safety and operational efficiency. 

AI for Operational 
Excellence 

Mass Transit Data 
Analytics System 

A data analytics platform that optimizes mass transit 
operations. 

AI for Operational 
Excellence 

Mobility Demand 
Prediction 

AI predicts mobility demand and optimizes transport 
routes. 

AI for Operational 
Excellence 

Travel Assistant and 
Travel Cockpit 

AI-powered travel assistant and cockpit for improved 
passenger and operational management. 

AI for Operational 
Excellence 

City Brain A smart city initiative using AI to optimize urban 
transportation networks. 

AI for Operational 
Excellence 

Traffic Monitoring on 
Drone Images 

Drones are used to monitor traffic and optimize flow. 

AI for Engineering 
Excellence 

Tunnel Lining Crack 
Detection 

AI detects cracks in tunnel linings, ensuring 
infrastructure integrity and safety. 
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AI APPLICATION USE CASE DESCRIPTION 

AI for Engineering 
Excellence 

Charging Control 
System 

AI optimizes and manages charging systems for 
electric buses, improving efficiency and reducing 
downtime. 

AI for Safety and 
Security 
Management 

Data Analytics and 
Accident Risk 
Prediction 

 

AI-driven data analytics to predict and reduce 
accident risk in bus operations. 

AI for Safety and 
Security 
Management 

Fraud Detection 
System 

AI system for detecting and preventing fraud in fare 
collection, improving financial integrity and reducing 
losses. 

The UITP report further highlights AI-driven innovations of the future, (1) smart station, (2) customer 

sentiment tracking, (3) mobility health tracker for public transport, (4) customer data engine, (5) incident 

disruption and simulation, and (6) smart grid for urban mobility.  

3.1.3 THE JOURNEY TOWARD AI-ENABLED RAILWAY COMPANIES 

(MCKINSEY AND UIC 2024) 

This report examines how AI, including generative AI, is being integrated into the railway sector, with a 

focus on existing and scalable future applications. The scope is limited to machine learning and deep 

learning, intentionally excluding robotics to concentrate on data-driven technologies. 

Traditionally, the rail industry has been cautious in adopting digital innovations. Insights from 

participating railway companies suggest this hesitation stems from several challenges. Chief among 

them are difficulties accessing high-quality, well-organized data, often fragmented across siloed 

systems that hinder scalable AI development. Regulatory complexities—such as ambiguities around 

data ownership, permissible uses, and compliance—further complicate progress. The lack of industry-

wide standards and low digital maturity have made it even harder to implement AI solutions effectively. 

Additionally, concerns persist about losing critical skills and institutional knowledge as AI transforms 

traditional work practices. 

Despite these obstacles, the industry is beginning to evolve. Notable progress includes the introduction 

of more digitally connected assets, such as modern rolling stock, and the faster rollout of data-driven 

applications, enabled by low-code and no-code development platforms. AI initiatives to date have 

largely focused on strategic priorities: boosting punctuality, improving passenger services, enhancing 

safety, and streamlining operations. However, few companies have successfully scaled these 

applications. Moving forward, the successful adoption of AI across the sector will depend heavily on 

strengthening data governance and ensuring robust cybersecurity measures. 

The McKinsey/UIC report identifies significant potential for AI to enhance a wide range of business 

functions across the rail value chain. These are grouped into three main categories. First, railway 

undertakings, which include both direct and supporting activities involved in delivering the core rail 

service. This encompasses operations and crew scheduling, disruption and incident management, 

rolling stock maintenance, station operations, rolling stock procurement and inventory management, 
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crew training, onboard services, and safety management. Second, infrastructure management, which 

covers the foundational systems that support rail service delivery. Key areas include network planning 

and optimization, slot allocation and traffic control, maintenance, procurement and inventory 

management, infrastructure safety, stakeholder coordination, and infrastructure development and 

investment. Third, passenger experience, which focuses on customer-facing activities such as 

marketing and pricing strategies, booking and ticketing services, real-time passenger information, in-

station revenue opportunities, and customer service. 

The McKinsey/UIC report emphasizes that the AI use cases explored within the rail industry are closely 

aligned with four key performance indicators: on-time performance, customer engagement, safety, and 

operational efficiency. These KPIs reflect the primary goals driving AI adoption across the sector. 

The report identifies approximately 20 AI use cases currently being explored or implemented by 

railway companies, each at varying levels of maturity. These use cases are illustrated in the Figure 3 

below from the report, showcasing the breadth and depth of AI applications across the industry. 

 

Figure 3: AI use cases in rail industry (Source: McKinsey and UIC 2024) 

 

The report organizes use cases into four application domains: railway undertakings, infrastructure 

management, passenger experience, and support functions. This deliverable focuses on the first three 

domains, as they are more relevant to metro and railway operations. In contrast, AI applications in 

support functions tend to be generic and not specific to the unique needs of the rail sector. 

Railway undertakings 

About 40% of surveyed railway companies have adopted AI for crew and shift optimization, improving 

staffing schedules by balancing coverage needs with employee preferences. This has led to safer, more 
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resilient operations across roles like drivers, onboard staff, and maintenance crews, with reported labor 

cost reductions and 10–15% shift optimization. 

AI for energy efficiency in rail is gaining traction, aiming to reduce consumption through optimized 

routing, maintenance, and train operation. Tools like eco-driving systems provide real-time driving 

recommendations, with reported energy savings of 10–15%. 

Predictive maintenance for rolling stock is used by about half of surveyed rail companies, focusing 

on critical assets prone to failure. Challenges include limited data access, though newer, connected 

trains are improving this. Reported benefits include a 15% boost in reliability, 20% lower maintenance 

costs, and 30% fewer breakdowns. 

Around 30% of surveyed rail companies are testing optimization algorithms for service scheduling, 

using AI to assess demand, prioritize paths, and manage constraints like station capacity and 

workforce. Deutsche Bahn, for example, combines AI and big data to predict train movements and 

provide real-time updates to passengers. 

Around 20% of surveyed rail companies are testing semi-autonomous and driverless GoA3 (Grade of 

Automation) trains, aiming for a 30% increase in capacity, 30-45% reduction in energy use, and lower 

labour costs. In 2019, China launched the world's first fully autonomous high-speed railway, connecting 

Beijing to Zhangjiakou at 350 kph for the 2022 Winter Olympics. 

Around 10% of railway companies are exploring AI-powered digital twins for real-time 

recommendations to manage disruptions. This technology aims to enhance decision-making, 

minimizing the impact on costs, passenger experience, and employee satisfaction during irregular 

operations. 

Infrastructure management 

AI-driven crew and shift optimization in railway undertakings has improved scheduling, ensuring 

better safety and resilience by generating optimal plans for crew allocation. 

All major infrastructure managers interviewed use AI-driven Rail Infrastructure Predictive 

Maintenance to prioritize critical assets, relying on specialized trains to detect track issues. This 

approach typically reduces unplanned downtime by 15-25%, cuts maintenance costs by 15-30%, 

improves failure detection by over 100%, and reduces delays by 20%. 

AI-based systems for Passenger Flow Management analyse passenger movement patterns, predict 

peak travel times, and dynamically adjust staffing or direct passengers to less crowded areas in real 

time. Using sensors, surveillance cameras, and machine learning algorithms, these systems optimize 

passenger flow, reduce bottlenecks, and enhance station security.  

Around 25% of railway companies are using AI for Capacity Planning Optimization, aiming to 

maximize network capacity while addressing operator, maintenance, and external needs. This can lead 

to a 7% to 9% increase in network capacity. 

Around 60% of infrastructure managers use AI for Real-time Traffic Management to optimize routes 

and reduce disruptions through automated, centralized control. This system allows for proactive 

planning, addressing path conflicts and predicting delays, ultimately improving network capacity, on-

time performance, and passenger experience., flagging issues and providing dispatchers with 

alternative options. 
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20% of railway companies interviewed are investigating the application of advanced analytics and 

machine learning in inventory management to forecast demand and optimize supply levels, with the 

goal of improving accuracy, reducing lead times, minimizing excess inventory, and boosting working 

capital. 

A few companies are exploring the use of generative AI to assist maintenance technicians through a 

maintenance co-pilot. This AI tool can analyse equipment manuals, quickly diagnose issues, and 

provide instructions for necessary procedures. It aims to improve efficiency, reduce costs, and address 

challenges in talent retention and attraction. 

About 10% of railway companies are exploring AI-powered network infrastructure digital twins to 

optimize infrastructure design and construction. This use case aims to cut capital expenditure by 10–

15% and reduce project overruns by 6 to 18 months. 

Passenger experience 

Around 5% of surveyed railway companies have adopted AI-based revenue management systems, 

moving beyond traditional rule-based approaches. These solutions require reservation-based systems 

and use machine learning to forecast demand and optimize pricing based on factors like route, time, 

and demand levels. In one case, this approach led to a 3–8% revenue increase and higher customer 

numbers by aligning prices with demand. 

About 25% of railway companies use AI-powered vision and predictive algorithms to enhance security 

(fraud and incivility protection). Initially deployed for health compliance, such as mask-wearing, these 

tools now help optimize security team deployment across networks. The result: 10% lower security 

costs, reduced fraud, increased ridership, and improved customer experience. 

Around 40% of surveyed railway companies are using AI to deliver real-time intermodal information, 

helping passengers plan seamless journeys across rail and other transport modes. This has led to a 

10–15% increase in customer satisfaction and stronger customer engagement. 

Passenger Flow Management is vital to enhancing the passenger experience, and many railways are 

leveraging AI to streamline boarding and disembarkation. Systems like the intelligent video analytics 

(DIVA) monitor crowd density in real time and guide passengers via platform displays to less congested 

areas. Additionally, predictive modelling helps rail operators take preventive measures to manage 

passenger flow during peak hours or busy travel seasons. 

Content Generation for Passengers is being used by 40% of interviewed railway companies to 

enhance customer experience through AI-driven personalized communication and real-time updates. 

For example, an AI-based interactive voice response system that engages directly with customers, 

either as a digital avatar, voice over the phone, or a physical robot. 

 

Table 3: AI Use Cases (Source: MCKINSEY AND UIC 2024) 

AI APPLICATION USE CASE DESCRIPTION 

Railway 
undertakings 

 

Crew and Shift 
Optimization 

AI algorithms optimize crew scheduling by balancing 
coverage with employee preferences, improving 
operational efficiency. 
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AI APPLICATION USE CASE DESCRIPTION 

Railway 
undertakings 
 

Energy Efficiency AI tools optimize train routing, maintenance schedules, 
and driving techniques to reduce energy consumption 
and improve efficiency. 

Railway 
undertakings 
 

Predictive 
Maintenance for 
Rolling Stock 

AI-based systems monitor train health, predict failures, 
and automate maintenance tasks to improve asset 
reliability and reduce downtime. 

Railway 
undertakings 
 

Service Scheduling 
Optimization 

AI analyses demand patterns and constraints to optimize 
train schedules, ensuring smooth operations and efficient 
resource allocation. 

Railway 
undertakings 
 

Autonomous Trains Semi-autonomous GoA3 trains use AI to automate 
operations, enhancing capacity and energy efficiency 
while reducing labor requirements. 

Railway 
undertakings 
 

Disruption 
Management 

AI-powered digital twins simulate real-time scenarios to 
optimize decision-making during disruptions, improving 
operational resilience. 

Infrastructure 
management 

 

Predictive 
Maintenance 

AI systems monitor infrastructure health, predict potential 
failures, and optimize maintenance scheduling to 
minimize downtime and cost. 

Infrastructure 
management 

 

Passenger Flow 
Management 

AI-driven systems analyse crowd density and passenger 
movement, adjusting staffing and guiding passengers to 
optimize flow and reduce congestion. 

Infrastructure 
management 

 

Capacity Planning 
Optimization 

AI tools assess network conditions, operator needs, and 
external factors to optimize resource allocation and 
increase overall network capacity. 

Infrastructure 
management 

 

Real-Time Traffic 
Management 

AI algorithms manage traffic flow in real-time by 
optimizing routes, predicting delays, and adjusting to 
dynamic conditions, enhancing operational efficiency. 

Infrastructure 
management 

 

Inventory 
Management 

Advanced AI systems forecast inventory demand, 
automate stock management, and optimize supply levels 
to reduce waste and improve efficiency. 

Infrastructure 
management 

 

Maintenance Co-
Pilot 

AI-driven maintenance assistants help technicians 
diagnose issues, access manuals, and suggest corrective 
actions, improving maintenance efficiency. 
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AI APPLICATION USE CASE DESCRIPTION 

Infrastructure 
management 

 

Digital Twin for 
Infrastructure 

AI-powered digital twins simulate infrastructure design 
and performance to optimize construction, reduce costs, 
and streamline project timelines. 

Passenger 
experience 

 

Revenue 
Management 

AI-based systems adjust pricing dynamically based on 
demand, optimizing revenue and improving customer 
segmentation and targeting. 

Passenger 
experience 

 

Security (Fraud and 
Incivility 
Prevention) 

AI vision systems monitor behaviour and detect 
anomalies, deploying security resources efficiently to 
prevent fraud and improve passenger safety. 

Passenger 
experience 

 

Real-Time 
Intermodal 
Information 

AI integrates data from various transport modes, 
providing real-time travel recommendations to 
passengers for a seamless journey. 

Passenger 
experience 

 

Content Generation 
for Passengers 

AI systems generate personalized communication and 
updates for passengers, enhancing engagement and 
delivering timely, relevant information. 

 

3.2 METRO OPERATIONS & AI: AN INDUSTRIAL STATUS 

QUO 

AI is gaining increasing popularity in industry as it can make processes more efficient, faster, and cost-

effective. Companies are therefore increasingly investing in the research and development of AI 

technologies (Capgemini, 2025). Thereby, the railway sector benefits from a steadily growing amount 

of available data that can be used for AI and machine learning solutions (Visser, 2025). Since 2017, 

GenAI has been gaining importance in the rail industry, with interest further increasing since 2022 

through the release of applications such as ChatGPT (Melnikov et al., 2024). The growing relevance of 

this topic is illustrated, for example, by InnoTrans, which has reserved a dedicated area for AI solutions 

since 2024. It is therefore not surprising that manufacturers and operators are already using numerous 

AI applications and constantly looking for new ways to implement AI in rail and metro operations. The 

railway industry's AI transformation is supported by an expanding network of technology partners and 

solution providers. Strategic technology partnerships between railway manufacturers and tech 

companies have become increasingly important as evidenced by several high-profile collaborations. 

Notable examples of these collaborations include Siemens' partnership with Microsoft (established 

2020) and Altair Engineering Inc. (established 2025), focusing on cloud computing and digital twin 

solutions In addition, AI companies like Nvidia are cooperating with industrials partners such as 

Siemens (established 2022) and Hitachi Rail (established 2024) to improve signalling systems through 
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AI, while Hitachi Rails partnership with Guavus (established 2017) specializes in real-time analytics for 

predictive maintenance. 

Despite the enormous potential and numerous ideas for AI use cases within the sector, it is important 

to consider that the integration of AI into metro operations presents several challenges due to the black 

box problem. This is because many of the use cases interesting for metro operations, such as 

autonomous driving, AI-based signalling control and automatic safety systems for collision avoidance 

fall into the category of “safety-critical” solutions. In these cases, highly complex AI mechanisms are 

necessary to process the abundance of data. These are therefore “black-box solutions”, where it is not 

directly traceable how the AI arrives at its solution/decision based on the deep learning models. While 

these black box solutions can be used without problems for non-critical solutions such as live updates 

and route calculation for customers, etc., it is more challenging for solutions involving decision-making 

in accidents, etc. The reason for this is that this traceability is precisely what is required when it comes 

to immediate decisions affecting passenger safety and legal liability. Hence, there is a trade-off between 

model complexity and interpretability, emphasizing the need to make AI more transparent and 

trustworthy to enable the use of AI in safety-critical applications. In addition to these technical 

challenges, organizations must navigate compliance with the EU AI Act, creating a distinct regulatory 

landscape for AI implementation in Europe. While AI solutions are being rapidly deployed across 

markets such as China, the US, and Japan, their adoption in the EU requires careful consideration. 

Despite proven success records in international markets, the EU's comprehensive data protection 

framework and AI governance standards require substantial modifications to existing solutions. This 

regulatory environment, while ensuring high standards of data protection and algorithmic accountability, 

inevitably extends implementation timelines and increases complexity for AI deployment in the 

European market. 

In contrast to conventional railway systems, metro systems function as relatively self-contained 

operational environments. These systems, characterized by their high degree of automation, generate 

substantial amounts of operational data, creating an ideal ecosystem for AI solution implementation. 

Particularly noteworthy is the highest automation level GoA4, which enables completely driverless 

operations and represents the pinnacle of metro automation technology.  

To get an overview of the currently available AI solutions in metro systems, a comprehensive web-

based analysis was conducted examining the AI solutions deployed by the nine leading railway 

manufacturers and major railway operators. The study focused on identifying current solutions and 

evaluating their applicability or potential adaptation for metro operations. It is important to acknowledge 

that the research findings are partially based on corporate marketing materials, and detailed technical 

specifications were not accessible. Nevertheless, combining the available information with industry-

specific assumptions reveals that die existing AI solutions in metro operations are predominantly 

focused on operational efficiency, predictive maintenance, automation, safety & risk mitigation, as well 

as customer experience. The identified AI functions identified in this area can be derived from the table 

below. 
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Table 4: AI Use Cases from Industry perspective (Source: Siemens 2025) 

OPERATIONAL 
EFFICIENCY  

PREDICTIVE 
MAINTENANCE AUTOMATION SAFETY & RISK 

MITIGATION  
CUSTOMER 
EXPERIENCE  

Prediction and 
optimization of 
energy 
consumption 

Pattern 
recognition for 
track conditions 

Automated train 
operations 

Obstacle 
detection 

Smart boarding 
management 

Network 
capacity 
maximization 

Real-time 
condition 
monitoring 

Autonomous 
depot operations 

Environmental 
Monitoring 

Personalized travel 
recommendation 
and real-time 
information about 
delays and routes 

Passenger flow 
optimization 

Automated 
diagnostic 
systems 

Self-learning 
traffic 
management 

Computer Vision 
for platform 
monitoring 

Crowd flow 
optimization 

Real-time traffic 
management 

Fault detection 
and analysis 

Automated 
decision-making 
systems 

Emergency 
response 
automation 

Interactive 
passenger 
assistance 

Dynamic 
timetable 
adjustments 

Maintenance 
schedule 
optimization 

Dynamic route 
adjustments 

Crowd density 
analysis 

Smart ticketing 
solutions 

Automated 
traffic flow 
optimization 

Wear and tear 
analysis 

Smart signalling 
systems 

Collision 
avoidance system 

Dynamic pricing 
and fare calculation 

Resource 
allocation 
optimization 

 
Automated 
incident-response 

Security threat 
detection 

 

 
Current evidence demonstrates that AI primarily serves as a supportive technology rather than a 

complete replacement for existing solutions in the railway sector. This approach is largely attributed to 

the previously discussed black box problem, which presents significant challenges for implementing 

pure AI-controlled systems. It is important to highlight that there is currently increased research in the 

field of explainable AI by both academic and industry partners. An example of this is the research 

conducted by Yushan Liu at Siemens. Yushan Liu employs techniques such as model interpretability 

and explainability algorithms to elucidate AI processes. These methods enable AI systems to provide 

insights into how they arrive at specific conclusions. These advancements aim to facilitate a better 

understanding of the reasoning behind AI-driven decisions. Depending on the progress of this research 

stream, it may become feasible in the future to utilize AI for safety-critical functions.  
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Despite these challenges, leading railway technology companies already successfully integrated 

various AI technologies into their existing solutions, focusing on three primary application areas: Train 

Control and Monitoring Systems (TCMS), Communications-Based Train Control (CBTC), and Predictive 

Maintenance. Within these domains, AI plays a crucial role in data integration, analysis, automation, 

and control processes. Particularly noteworthy is the growing implementation of AI-powered solutions 

for real-time analysis of image and video data, which generates valuable additional insights for 

operational optimization. 

3.2.1 AI FOR TCMS SYSTEMS 

TCMS serves as the train's sophisticated “nervous system”, orchestrating a comprehensive network of 

computer-based control and monitoring functions. At its core, this complex system seamlessly 

coordinates and oversees a wide range of essential operations throughout the vehicle. These include 

dynamic power regulation for drive control, safety-monitored door operations, and intelligent climate 

control that adapts to external temperatures while optimizing energy efficiency based on passenger 

volumes. Additionally, it manages passenger information systems and maintains continuous 

surveillance of all critical train components. Within this advanced framework, AI applications enhance 

the TCMS's capabilities by focusing on three fundamental areas: sophisticated data integration, 

instantaneous analysis of operational parameters, and adaptive system controls. This intelligent 

integration results in significantly improved train operation efficiency while maintaining unwavering 

adherence to the highest safety standards. The synergy between traditional control systems and AI-

enhanced functionality creates a robust and responsive platform that optimizes both performance and 

reliability. 

A typical example of AI image processing for TCMS systems are Platform Screen Door Monitoring 

Systems for GoA4 operations. These systems combine various sensor technologies such as high-

resolution cameras, LiDAR, and infrared sensors with advanced AI-supported image processing to 

ensure comprehensive monitoring of the platform area. Through the implementation of edge computing 

and redundant processing units, real-time decisions are enabled with the highest reliability. This means, 

that the system automatically detects people in danger zones, continuously monitors the critical gap 

between train and platform edge and ensures precise door alignment. This information is then 

transferred to the TCM System. In case of potential hazards, an immediate response can be triggered, 

such as automatic emergency braking or door blocking. 

3.2.2 AI FOR CBTC SYSTEMS 

CBTC represents an advanced railway signalling and control system that enables automated train 

operation through continuous wireless communication between trains and wayside equipment. The 

system optimizes rail traffic through comprehensive management of train movements across the entire 

network, with automatic route setting, schedule regulation, and conflict resolution serving as central 

functions. Optimal operational efficiency is achieved through real-time adaptation to changing traffic 

conditions, management of train headways, and coordination of platform arrivals and departures. 

The AI applications in CBTC systems primarily focus on optimization and support functions. In the area 

of traffic optimization, AI algorithms analyse historical and real-time data to optimize schedules, train 

headways, and energy consumption. Simultaneously, predictive maintenance through AI-powered 

analytics enables early detection of potential issues in system components and infrastructure. 
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Passenger flow management utilizes AI to process data from various sources such as ticket gates, 

platform sensors, and train load sensors to predict passenger volumes and optimize service patterns. 

In the area of decision support, AI assists operators in the control centre with managing complex 

operational scenarios and responding to disruptions. However, it is important to emphasize that safety-

critical functions continue to rely on deterministic, Safety Integrity Level 4 (SIL4)-certified systems rather 

than AI.  

3.2.3 AI FOR PREDICTIVE MAINTENANCE 

Artificial Intelligence is increasingly becoming an integral part of modern asset management systems, 

particularly in the area of predictive maintenance. Examples of such solutions include the Alstom 

HealthHub platform, Hitachi's HMAX solutions platform, Stadler's Diagnostic System SDS, Siemens 

Railigent X Health States, and CAF's LeadMind solution. 

 

Most of these solutions are based on cloud-systems that collect and analyse data from various sources 

to create precise maintenance forecasts. Designed as advanced diagnostic tools, these platforms 

operate independently of safety-critical systems, allowing for the safe use of AI technologies. 

Consequently, these systems represent a significant advancement in maintenance technology, 

enabling the transition from reactive to proactive maintenance. By integrating intelligent diagnostic 

functions, companies can optimize their maintenance processes, reduce manual inspections and 

downtime, and improve overall system reliability 

 

It is important to note that different providers and metro operations must meet varying requirements, 

resulting in diverse functionalities within these platforms. This diversity ensures that the specific needs 

of different industries and applications are adequately addressed, providing tailored solutions that 

enhance the effectiveness and efficiency of maintenance operations. Consequently, solutions like 

Siemens Railigent X Health States and Alstom HealthHub are not identical and cannot be used 

interchangeably. Each platform offers unique features and capabilities designed to meet specific 

requirements. However, in most cases, the implementation scope encompasses the following two main 

areas: 

• Predictive Maintenance of Vehicles: AI solutions continuously monitor critical components 

such as traction systems, doors, brakes, and HVAC units, enabling precise maintenance 

scheduling and reducing unnecessary downtime. This proactive approach has demonstrated 

significant improvements in fleet availability and reliability.  

• Predictive Maintenance of Infrastructure: AI solutions provide comprehensive monitoring of 

track systems, power distribution, signalling equipment, and station facilities. The technology 

analyses vast amounts of sensor data in real-time, identifying potential issues before they 

impact service operations. This capability has proven particularly valuable in maintaining 

complex metro networks where traditional inspection methods are time-consuming and often 

insufficient.  

To highlight the use of AI in the field of predictive maintenance, the following chapter will describe the 

Siemens Railigent X Health States and VEMS solutions in more detail. The aim of this description is to 

better understand the underlying AI technologies and functionalities of predictive maintenance 

solutions. 
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Railigent X Health States is an application from the Railigent X Cloud that leverages AI and IoT 

technologies to transform maintenance processes. It continuously collects and analyses diverse data 

streams from multiple sources. Through real-time condition monitoring, failure prediction algorithms, 

and performance analytics, proactive maintenance strategies are enabled. The integration of digital 

twins and continuous asset health monitoring provides a detailed understanding of equipment status 

and performance trends. While these data provide different perspectives on the condition of the different 

components, it’s essential to interpret them in the right manner and draw the right conclusions. Railigent 

X Health States achieves this by leveraging advanced analytics and machine learning algorithms, to 

transform the data into actionable insights using an AI-based decision-support model for consistent 

assessment and maintenance recommendations Figure 4. Through this approach Railigent X Health 

States helps to draw the right conclusion of the gathered data. This proactive approach not only 

enhances asset availability but also reduces maintenance costs and extends component lifecycles. The 

system's ability to integrate with existing infrastructure while providing forward-looking maintenance 

insights makes it indispensable for modern rail operations. 

 

Figure 4: From Data Collection to predictive maintenance (Source: Siemens 2025) 

Similar to TCMS and CBTC solutions, predictive maintenance systems have significantly advanced 

through the integration of AI-powered visual inspection technologies. Building on these advancements, 

industry leaders have developed innovative solutions such as Siemens' Vehicle Equipment 

Maintenance System (VEMS) and Alstom's TrainScanner. These systems employ cutting-edge laser 

and camera technology to monitor and assess train and metro components by capturing high-resolution 

images and precise measurements as trains pass through specialized measurement facilities. 

Advanced AI algorithms and image and video analysis systems automatically detect anomalies, 

including component wear, structural damage, and dimensional deviations, facilitating early intervention 

and optimized maintenance scheduling.  

 

VEMS provides a suite of automated inspection equipment for rail vehicles, utilizing AI for image and 

video analysis, as well as sensor and laser technologies to evaluate their service availability and safety. 

This equipment gathers data on various train components, which is subsequently transmitted to the 

Railigent X Health States Application. Figure 5 presents an overview of the different solutions and 
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systems that collect various types of vehicle data. The data collected is streamed directly into asset 

management systems like Railigent x Health States, enabling real-time analysis and continuous 

monitoring. To give readers a better understanding of the different solutions and their underlying 

functions and purposes, the systems are presented in more detail below: 

 

 

Figure 5: Siemens VEMS Solutions for Data Collection (Source: Siemens 2025) 

System 1: VEMS for wheel tread measurement - The Wheel Tread Measurement System uses patented 

technology to generate a complete 360° model of the wheel tread as it rolls by. The system uses this 

data to analyse each wheel for cavities, flats, and out-of-roundness in milliseconds instead of the hours 

that a current full-vehicle inspection can take. This approach also eliminates the time-consuming 

process of stopping a train and lifting each axle to make a manual 360° measurement. 

System 2:  VEMS for visual inspection - The Visual Inspection System replaces traditional labour-based 

inspections with computer vision and machine learning. The modular design allows the system to be 

configured to meet the maintainer’s business case. Options range from a system that monitors an 

individual bolt to a full 360° whole-vehicle integrity solution. The system generates tabular reports for 

specific measured values and a complete image file for audit and review purposes. 

System 3: VEMS for pantograph wear measurement - The fully automated VEMS for pantographs 

measure the integrity of the components. The recorded data can be trended to derive wear rates and 

predict service life. And the measurement records can be stored, analysed, viewed, and reported in the 

MRX data management system. 

System 4: VEMS for brake measurement - VEMS for brakes are based on high-precision, non-contact 

measurements of the friction materials and brake components. These systems measure the wear of 

brake pads, brake discs, brake blocks, and brake shoes and can compare wear trends across axles, 

bogies, trains, and fleets. Any missing components, such as like brake pads, are reliably identified. 

System 5: The Wheel Profile Measurement System provides highly accurate automated measurements 

of all wheel parameters required by international standards as well as additional parameters and reports 

focused on reducing costs through increasing wheel life. The hardware design is focused on 

replaceable units that ensure industry-leading availability of the system with low lifetime costs. 
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3.2.4 SUMMARY 

The implementation of AI in metro operations demonstrates a strategic and measured approach to 

technological integration. The current AI landscape is characterized by selective implementation in 

mostly non-safety-critical applications, with a strong focus on operational optimization, efficiency 

improvements, predictive maintenance solutions, and enhanced customer service applications, all while 

maintaining strict adherence to safety standards and regulations. Hence, rather than pursuing complete 

system transformation, the industry has adopted AI selectively and pragmatically, focusing on 

enhancing existing systems while ensuring operational safety and reliability.  

To extend AI applications to safety-critical functions, solutions for developing more transparent AI 

systems are necessary to address the current "black box" challenge. Within academic research and 

industry, various solutions for the explainability of AI are being explored. It is important to note that 

different solutions are used depending on the data, which means that a one-size-fits-all solution for AI 

cannot be developed. However, resolving the challenge of the black-box systems could significantly 

expand AI applications across metro operations while maintaining essential safety standards.  

The increasing use of AI for image and video analysis has opened new possibilities for information 

processing and input generation resulting in different solutions and use cases for metro operations.  

To consider is that regional differences in AI adoption remain notable, with rapid implementation in 

China, the US, and Japan, contrasting with a more measured approach in European markets due to 

stringent regulations. This creates an ongoing need to carefully balance innovation with regulatory 

compliance, particularly in markets with comprehensive data protection frameworks and AI governance 

standards. This balanced approach to AI integration reflects the industry's commitment to leveraging 

new technologies while ensuring safe and reliable metro operations. Hence, the focus remains on 

enhancement rather than replacement, indicating a mature and pragmatic implementation strategy that 

prioritizes operational stability alongside technological advancement. 

 

3.3 METRO OPERATIONS AND AI: INSIGHTS FROM 

EXPERTS WORKSHOPS  

3.3.1 WORKSHOP 26 MARCH 2025 IN VIENNA  

3.3.1.1 GENERAL DISCUSSIONS ON ADAPTABILITY ANALYSIS 

When discussing about challenges regarding planning and optimizing the service, it was remarked the 

importance of planning for the long term also considering some parameters, for example dwell time in 

the demand forecasting (to know how to estimate the right dwell time is a challenge for some operators). 

About planning for the short term, the challenge is reliability. At long-term, demand forecasting, although 

models are available and widely used, some assumptions still need to be made. Of course, these 

assumptions have an impact on the financial side (e.g., buy new trains, extend/update the 

infrastructure). Another challenge for EAB members is to regulate the entrance flow in the stations when 

reaching the maximum capacity. Demand evolved after COVID, with a distribution over the week very 

different compared to pre 2020 (increased working from home, more demand at the weekends). In the 
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planning of the service, another challenge is the presence of different stakeholders in the landscape 

(for example political bodies or different authorities for different transport mode, that are sometimes not 

communicating properly, although some synergies are starting to be exploited nowadays). Another 

aspect to be considered is ticketing that is sometimes very rigid and does not reflect a demand that is 

flexible. Maintenance has an influence on service planning.  

Importance of resilience, for example towards climate change events, was remarked too.  

About demand, and specifically about counting methods, operators use different tools: turnstiles, 

sensors, historical data, statistics, estimations (that have to be as much accurate as possible). Historical 

data is still widely used for planning. To create accurate origin-destination matrix would surely allow 

better organization of the service. There are experiments with GPS or Bluetooth used for tracking 

people, although not much diffused.  

Additional gaps and limitations for planning the service have been remarked: data accuracy is very 

critical (prove that data is reliable); data integration (“speaking the same language”); exploitation of 

scenarios that are harder to model (e.g., non-peak hour; planning maintenance for minimizing 

disruptions).  

Importance of an integrated approach taking into account metros but in conjunction with other modes, 

is paramount, and also the relevance to link urban and transport planning (as shown by Wiener Linien 

in the morning). Concluding this session, it was remarked that contingency plans must be accurate. 

3.3.1.2 WORK SESSION – AI AND DATA SCIENCE IMPLEMENTATION IN 

METRO OPERATIONS 

Participants were asked to answer the following pre-prepared questions, thus animating a debate that 

will feed NEXUS project activities and WP6 deliverables. 

• What are the most relevant use cases for ML / AI that metro operators see? 

• Has data already been collected to support such a use case? 

• What are human tasks that can be supported by or even automated with ML / AI? 

• What are the most relevant datasets for metro operations that are already available and 
can be shared with researchers in Nexus? 

Different use cases about AI/IoT/Machine Learning applications to metros have been mentioned during 

a brainstorming session. Among the most relevant: predictive maintenance (status of asset); knowledge 

management (chatbot internally used by the operator with their staff, for example to know security 

procedures or procedures in general); planning of services (adapting service to demand); OCC operator 

support (prioritization of tasks/warnings); track inspection; customer service (overcoming language 

barriers with customers, especially in touristic destinations); and prediction of demand; aggression 

monitoring, alerting the operator (note: there is research on this, operators might be interested); 

dynamic adaptation of the train speed or stations in which the train stops if nobody on platform; detecting 

pollution/trash (giving “live” instructions for improving cleanness of vehicles/stations. If limited to a study, 

it was considered interesting to explore the correlation between weather and use of metro. Other “out 

of the box” applications in the future: pickpockets tracked with face recognition; lost and found; 

suspicious behaviour detection (all the above need to be a regulatory framework that would enable 

them); cyberthreats identifications. When it comes to AI, it was remarked that although technologies 
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are there (and/or in advanced development phase), the training of the staff remains a key pre-requisite 

for their effective exploitation. 

Q1 What are the most relevant use Cases for ML / AI that metro operators see? 

• Predictive maintenance, lifespan of the asset, increase efficiency, cost savings asset 

dependent. Improvements in cost and add cost savings to maintenance. 

• Support operator with real time data, visualizations of alarms,  

• AI for knowledge management, internal chatbots asking questions about procedures. What are 

the security/safety procedures for a type of task (safety when working with live power?) 

challenges with accuracy of retrieved information/generated answers. Balancing between 

accuracy and interpretation allowance. Driver might need to find a procedure quickly.  

• Create predictive model of passenger travel routes, build statistic about a station, increase of 

passenger in station because of event in the town,  

• Build origin/destination matrix with AI 

• Olympics, give information to people in their language, and translate new information 

simultaneously to customers 

• Giving operators different warnings based on activities? 

• Detect, people/objects in the system that are not normal 

• Interest in aggression monitoring? Station and train would be useful, highlighting things 

  

Q2 Has data already been collected to support such a use case? 

• Soiling, pollution of vehicle? Right now, manual checks at the end of the line.  

• Timetables of stop times, durations? Historical data, main usecase to prevent services 

overloading during concerts etc. weather? There is relation with weather, more people take 

metro during bad weather, but they don’t know how to use it. Interest: for a study. Universities 

already do first studies on weather and passenger demand, external factors and how the affect 

the demand of the metro, how to predict ahead of time. You need to predict ridership instead 

of guessing for planning. What can metro do to adapt to the external factors, because flexibility 

is limited. 

• Reduce top speeds or delay trains during low demand. Interesting? Sometimes mandatory 

intervals and KPIs, but saving power is interesting. 

• Safety application? No imaged safety tasks, the best solution in a situation shouldn’t be chosen 

by a robot but by the experience of an operator. – pickpocketing detection, lost and found also 

a huge topic 

  

Q3 What are human tasks that can be supported by or even automated with ML / AI? 

• Platform safety, strange or dangerous behaviours, Washington have experts that can detect 

mental health issues via cctv and alert security. Understand risky behaviour in advance, and 

alert. [Passenger] Behaviour detection is mainstream in US but not applicable in EU. Ai 

application regarding hidden objects have been started, but difficult to implement in real cases, 

AI act and GDPR are making it difficult. Policing is extremely strict. 

• Anomalies in cybersecurity is widespread. Common trends is ransomware, innocent email 

infects system, USB attached to machine, etc. 
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The work session concluded with a reminder to all participants about the importance of their feedback—

through surveys, interviews, or direct contact.. 

 

3.3.2 PARTNER WORKSHOP 22 APRIL 2025 IN GRAZ  

3.3.2.1 WORKSHOP GOALS 

• Identify industry relevant use cases on ai in future metro operations 

• Create Big Picture: IoT, Big Data, and AI applications in future metro operations 

• Collect and visualize AI use cases from the perspective of the OEM (Siemens) 

• Briefly describe and categorise UCs in 

o Siemens solution or available as a product 

o Solution relevant for Siemens, but not in use 

o Solution not relevant for the time being, but technically feasible 

• Evaluate content for upcoming deliverable D6.3 

• Consensus Siemens - ViF on the next steps in the project 

 

3.3.2.2 WORKSHOP CONTENT 

On 22 April, the partners Siemens and Virtual Vehicle met for a bilateral Nexus workshop in Graz. The 

aim was to familiarize themselves with the perspective of industry (OEM) in particular and to gain an 

overview of which AI-supported solutions are relevant in the industrial environment. 

A detailed distinction was made as to which approaches are still under development and which 

approaches are already available as products. Furthermore, products already in use at a metro operator 

were recorded. A total of 43 possible use cases were identified, discussed and recorded with regard to 

manufacturer, potential, classification, goal, function, assumed use of AI, and source (link). All use 

cases were checked for potential applications in metro operations and finally documented in master 

table. 

The master table with a complete overview is attached in Annex. 

 

3.3.2.3 WORKSHOP RESULTS AND NEXT STEPS  

• Stick to the Soiling UC “operational readiness detection”. 

• Obstacle Detection will be only theoretically described but no further analysis. 

• Simulation of Metro operation after checking the feasibility (energy optimization, transport 

capacity optimization, potential of GoA4, etc.). 

• Cost and trade-off CCTV processing, customer-oriented priority list / budget. 

• Investigation of audio files (spraying, vehicle monitoring, etc.). 

• Create a questionnaire and deliver it via UITP to rate the Use Cases by the Metro Operators 
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4 DEEP DIVE: AI IN SPECIFIC USE CASES 

FOR FUTURE METRO OPERATIONS  

4.1 PREDICTION OF CROWDING BASED ON EXOGENOUS 

DATA SOURCES 

In recent decades, the increasing urbanization and expansion of public transport networks made the 

development of accurate prediction models increasingly crucial to forecast crowding and passenger 

flows. A reliable prediction of the public transport demand not only allows optimization of the 

management of the infrastructure, but also allows improvement of the user experience, reduces 

passenger waiting time, and mitigates the risks connected to crowded spaces.  

Passenger flow prediction methods greatly improved in the last decades thanks to technological 

progress and data availability. In the ‘70s and ‘80s predictions were based on classical statistical 

models, such as linear regressions and moving average: methods that failed to capture complex 

patterns in the data. 

The introduction of automatic data gathering systems, like smart card readers and electronic ticket 

barriers, changed the way of predicting crowdedness. The greater amount of available data enabled 

more sophisticated algorithms, capable of modelling seasonality and other form of cyclic fluctuations 

which are typical of public transport. While these models can capture basic trends and patterns, they 

fail in scenarios such as special events or sudden changes in weather. Moreover, this kind of model 

cannot automatically adapt in changes in the patterns and require a significant amount of human 

supervision. 

The 2000s saw the emergence of machine learning as a prediction tool. The usage of techniques like 

Support Vector Machines and Random Forests allowed to model non-linear relationships in the data 

and to incorporate context variables like special events, weather conditions, and patterns in the user 

behaviours. 

During the last decade deep learning techniques revolutionized this field once again: Recurrent Neural 

Networks (RRN) and Long Short-Term Memory (LSTM) Networks are particularly effective in capturing 

complex time-dependent patterns, while Convolutional Neural Networks (CNN) are excellent for spatial 

analysis. 

The COVID-19 pandemic introduced new challenges in predicting passenger flow: previously 

developed models struggled to make accurate predictions in this context. For this reason, new models 

capable of rapidly adapting their predictions to new conditions have been developed. 

In this section the existing literature on this subject will be investigated, focusing on the different 

methodologies that have been adopted to predict passenger flows and, on those solutions, based on 

technologies such as machine learning and data analysis. Both traditional predictive models based on 
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time series and regression, and newer approaches based on neural networks and deep learning will be 

analysed.   

4.1.1 CLASSICAL METHODS  

Classical methods to predict passenger flow are based on statistical methods that exploit the temporal 

structure of the data to generate predictions. The most common methods employed to perform this 

statistical time series-analysis are the three methods from the Autoregressive Integrated Moving 

Average (ARIMA) group.  

ARIMA  (Box & Jenkins, 1970)  is one of the most used methods used to predict univariate time-series. 

This model is particularly useful when the data contains a trend, but not seasonality. It is not ideal for 

the crowding prediction use case as usually passengers follow seasonal patterns (e.g., differences in 

passenger behaviour during holidays and weekdays). The ARIMA model has been employed to predict 

passenger flow in (Feng & Cai, 2016; Tang, Zhao, Cabrera, Ma, & Tsui, 2019; Yan, Zhou, Zhao, & Wu, 

2018).  

Seasonal ARIMA (SARIMA) (Box & Jenkins, 1970) tackles this problem by adding the seasonality to 

the analysis. This model has been employed to predict metro passenger flow in (Milenković, Švadlenka, 

Melichar, Bojović, & Avramović, 2016).  

Another evolution of the ARIMA model is Space-Time ARIMA (STARIMA) (Cliff & Ord, 1975). It extends 

the ARIMA model by introducing space-time dependencies between observations from distinct 

locations. It has been employed in (Duan, Mao, Zhang, & Wang, 2016) to predict traffic flow. 

4.1.2 NEURAL NETWORKS  

Differently from classical statistical methods, Neural Networks can learn complex patterns in passenger 

flow and exploit large datasets containing heterogeneous data such as historical data, weather data, 

extraordinary events, and information on the transportation network. Specialized architectures like 

RNN, LSTM Networks, and GCN are particularly effective in capturing the complex space-time 

dependencies in crowd prediction. 

In (He, Li, Zhu, & Tsui, 2022) Convolutional-Recurrent Neural Networks have been adopted to capture 

the complexity of multiple graphs used to encode the spatial correlation between stations combined 

with exogenous data sources. The authors underline the importance of features like the network 

structure and the recent flow patterns. The developed model can predict passengers’ flow both in and 

out of the stations and has been successfully employed in the context of the Shenzhen metro.  

In (Yang, et al., 2021) the short-term prediction of passengers’ flow has been made using the Wave-

LSTM model, which combines the LSTM neural networks with the wavelet transform. The study has 

been conducted on the data coming from a single metro station of Beijing. The accuracy of this hybrid 

approach highlights the potential of combining time series analysis with neural networks.  

Also (Ye, Zhao, Ye, & Xu, 2020) employ LSTM neural networks to capture the complex space-time 

correlations in the passenger flow. The proposed framework exploits distance in time and daily and 

weekly patterns of each station, combined with spatial information, such as near stations patterns. This 
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framework has been successfully tested on Shenzhen metro data, demonstrating its ability to accurately 

predict crowding.  

In (Wan, Cheng, & Yang, 2024) machine learning is integrated with time-series analysis. The approach 

proposed in this work consists in three phases: (1) decomposition of the data in trends, periodic 

components, and irregular fluctuation, (2) a more fine-grained decomposition using the Ensemble 

Empirical Mode Decomposition (EEMD) algorithm, and (3) normalize the obtained data and train the 

ML model.  

In (Xiong, Zheng, Song, Zhong, & Huang, 2019) deep neural networks combined with LSTM and CNN 

methods have been used to predict passenger flows. This work demonstrates the capabilities of LSTM 

neural networks in making long term predictions. According to the results, this method is highly accurate 

in predicting rush hour passenger peaks and other anomalies during events. This approach has been 

tested using the Beijing metro data, an improvement over the traditional method.  

In (Xie, et al., 2021) is presented a predictive model for sudden peaks in passenger flow. It considers 

both incoming and outgoing passengers and employs Wavelet Neural Network (WNN) to detect 

anomalies in the passenger flow, once the anomaly has been detected, it uses a Genetic Algorithm 

(GA) to enhance prediction accuracy.  

In (Xue, Liu, Ren, Ma, & Gong, 2022) a model named Multivariate Disturbance-Based Hybrid Deep 

Neural Network (MDN-HDNN) is presented. It exploits smart card transactions and social media posts 

to enhance the crowding prediction. The correlation analysis described in this paper shows that the 

volume of social media posts can be used to improve the accuracy of passenger flow peaks predictions 

when compared to traditional methods.  

In (Zhang, Han, Peng, Li, & Chen, 2022) the Graph Convolutional and Comprehensive Neural network 

(GCTN) model is described. This model combines several deep network techniques such as 

Transformers and LSTM to capture global and local time dependencies, while a convolutional neural 

network on graphs has been used to capture spatial correlations between stations.  

In (Zhang, Chen, Cui, Guo, & Zhu, 2021) the ResLSTM model is presented. This model combines three 

advanced ML technologies: Residual Network (ResNet), GCN, and LSTM. ResNet is used to capture 

spatial correlations between metro stations, GCN extract topology information from the metro network, 

and LSTM model temporal dependencies. It exploits four types of data: incoming passenger flow, 

outgoing passenger flow, network topology and weather conditions.  

In (Danfeng & Jing, 2019) a model based on multi-type attention networks is presented. This exploits 

several attention mechanisms to extract features from multiple sources like past passenger flow data, 

exogenous data, and station information. Moreover, a hierarchical attention mechanism is implemented 

to model the relations between stations and lines, while embedding techniques allow combining 

different data types. 
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4.1.3 OTHER METHODS  

In addition to classical models and neural networks, various alternative approaches have been 

developed to improve passenger flow forecasting in metropolitan networks.  

In (Toto, et al., 2016) the authors present PULSE, a framework that allows the predictions of incoming 

passengers in metro stations. This model exploits two kinds of features: streaming features (i.e., 

temporal variable such as time of the day, weather conditions, past traffic), and station specific features 

(i.e., characteristics of the stations such as peak hour crowdedness, distance from the city centre, and 

average passengers’ flow). PULSE can automatically choose the best model to apply to each specific 

station and optimize the set of features based on the local context of the station. It employs both 

classical methods (e.g., ARIMA) and machine learning methods (e.g., Random Forests).  

In (Park, Choi, Kim, & Yoo, 2022) an approach based on clustering with the funFEM method has been 

proposed. This approach consists in two phases: (1) clustering of the metro stations based on the 

passengers’ flow patterns and (2) forecast of the time series for each cluster. The study is based on the 

smart card transactions in the Seoul metro system as the main data source.  

(Cheng, et al., 2024) is focussed on short term prediction of passenger flows. The authors employ a 

wide range of data sources and their method is based on the following pipeline: (1) initial selection of 

feature using Gray Relation Analysis (GRA) and SHapley Additive exPlanations (SHAP), (2) Empirical 

Model Decomposition (EMD)  to obtain more interpretable components, (3) feature selection based on 

Spearman correlation coefficient, and (4) prediction using recurrence plot and picture information 

entropy.  

In (Sun, Leng, & Guan, 2015) a method that combines Support Vector Machines (SVM) and wavelet 

transform is presented. The authors propose the following pipeline: (1) decomposition of the passenger 

flow time-series in low and high frequency components using wavelets, (2) predict the single 

components using SVM, and (3) reconstruction of the predicted series, again with wavelets. 

 

4.2 DEMAND FORECASTING IN METRO OPERATIONS 

4.2.1 CLASSIFICATION OF METHODS USED IN URBAN RAIL 

DEMAND FORECASTING 

Demand forecasting, often conflated with Passenger flow prediction, plays a critical role in the strategic 

and operational functions of railway systems (Milenković & Bojović, 2016) serves as a foundational 

element for the planning and control of various domains, including transport operations, infrastructure 

development, and service provision. As Nguyen et.al.  (2020) highlight, the forecasting of passenger 

flow demand is particularly effective in optimizing metro service schedules, improving passenger flow 

management, and supporting effective policy-making and planning. Accurate demand forecasting 

enables railway operators to align transport supply with anticipated demand, thereby enhancing overall 

system efficiency.  
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Milenkovic, et.al, (2013) also emphasised that a thorough understanding of existing passenger travel 

patterns is essential to identify and analyse existing traffic related challenges. The influx of passengers 

during peak hour surges whether predictable such as during morning or evening commutes or 

unexpected influx of passengers places a strain on the system. These fluctuations often lead to 

congestion, service delays and operational inefficiencies. As a result, metro operators frequently 

encounter difficulties to appropriately provide services needed to passengers that balances efficiency, 

cost-effectiveness and passenger satisfaction. 

Despite its importance, demand forecasting is inherently limited by its inability to account for all future 

uncertainties. Unforeseen factors can significantly impact the accuracy and reliability of forecasts 

(Milenković & Bojović, 2016) . 

Demand forecasting horizons are classified into three types as shown in Table 5. Long term forecast 

which look ahead to 5 to 10 years. Medium term forecasts which extend from 2 to 5 years into the future 

and Short-term forecast which predicts intervals between 6 to 18 months (Feng, et al, 2021). Outputs 

from short-term forecasting in particular plays a crucial role in immediate operational planning such as 

minute-based highway forecasting or hour based, or daily based forecasting for seat allocation in 

railways (Tsai & Wei, 2009). It is no surprise therefore that, Celebi, et.al, (2009) highlight short term 

forecasting as the key to the success of transportation planning and management like timetabling and 

resource allocation.   

 

Table 5: Classification of Demand Forecasting (Source: Feng et. al 2019) 

Time Horizons Time frame Focus 

Long- Term forecast 5 -10 years Strategic investments 

Medium -term forecast  2 to 5 years  Planning  

Short -term forecast  6-18 months  Operations 

 

This literature explores a wide range of techniques used in demand forecasting specifically in metro 

and urban rail operations, highlighting the methods used for demand forecasting in metro operations to 

provide comprehensive understanding of the advancement in forecasting passenger demands as well 

as the future trends. Over the past decades, an extensive body of research has been contributed to 

enrich the forecasting approaches of urban rail transit. Both, qualitative approaches, such as Delphi, 

economic survey and analogical methods are as well as quantitative have been ways in which demand 

has been forecasted over time (Bai, 2016).  Nonetheless, more interest has increasingly gravitated 

towards quantitative method of urban rail demand forecasting (Fang et.al, 2019). 

 

Commonly used methods for rail transit demand forecasting include the traditional models, statistical 

models, machine learning and simulation software. Recent research has brought more attention to 

machine learning techniques which is a subset of artificial intelligence to accurately forecast passenger 

demand in transportation as a whole.  
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Figure 6: Classification of methods used in Urban rail demand forecasting (Source: Fang et.al 2019) 

Figure 6 illustrates various quantitative methods of demand forecasting pointing out the growing use of 

artificial intelligence as a key future trend. Since there is limited research applying qualitative methods 

or traditional approaches in recent developments, this report focuses on quantitative techniques 

specifically those involving statistical models and artificial intelligence on passenger demand 

forecasting. 

 

4.2.2 STATISTICAL METHOD OF DEMAND FORECASTING 

Numerous studies have employed traditional statistical ways in which demand of passengers are 

predicted in railway systems, including linear regression, time series analysis, trending models, 

exponential smoothing, moving average and the AutoRegressive Integrated Moving Average, ARIMA 

(Halyal, et.al, 2022). In general, Demand Forecasting methodologies can be both qualitative and 

quantitative. Qualitative forecasting relies on insights provided directly by railway operators, while 

quantitative methods leverage historical data to identify trends and patterns. Table 6 shows a summary 

of studies on the use of statistical methods for passenger demand forecasting in urban rail transit.  

Mendhe et al. (2025) presented a comprehensive study utilising ARIMA models to predict passenger 

traffic in metro systems using ticket reservation data from Pune Metro system, India. These ARIMA 

models identified seasonal trends and seasonal variations in ridership, enabling accurate predictions of 

passenger flow patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

Urban Rail Transit Demand Forecasting  

Qualitative Methods   Quantitative Methods   
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Models  

Statistical 

Models  

Artificial 

Intelligence 
Simulation 

Software  

  

-Four- Stage Model 

-Land Use Model   

 

 

-Time series Model 

-Regression Model   

 

Support Vector Machine 
Regression  
Artificial Neural Networks  

Deep learning Methods  

Machine learning  

 

Model verification or 

visualisation  

TransCaD, Simul8, 

AnyLogic 

 Applications  

-Delphi  

-Economic surveys  

- Analogical methods  
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Anvari et al. (2016) developed a time series forecasting framework based on Box-Jenkins methods for 

public transportation systems and the model was tested on real passenger traffic data from Istanbul 

Metro, the tests showed that the proposed framework is very effective and gives a higher accuracy. 

Based on Box-Jenkins, ARIMA model is found to be best suited for forecasting long term passenger 

demand and one of the most widely used time series models (Zhang 2003). 

Kato et. al. (2017) developed a well-calibrated, accurate model to forecast urban rail travel demand in 

Tokyo’s metropolitan rail network using mathematical modelling to help Tokyo’s 15-year rail investment 

strategy. 

In a comprehensive study, Tang et al. (2019) used various forecasting models, including time series 

model, ARIMA, linear regression and support vector regression to forecast short-term passenger flow 

at subway stations by utilising the data collected through an automatic fare collection system to evaluate 

the effect of temporal and spatial features as well as external weather influences on passenger flow 

forecasting.  

To improve the granularity of temporal forecasts, Chuwang and Chen (2022) examined the comparative 

performance of ARIMA, Seasonal ARIMA (SARIMA), and the Facebook Prophet algorithm in predicting 

daily and weekly passenger demand. Their results suggested that Prophet outperformed SARIMA in 

daily forecasts, while ARIMA remained superior for weekly projections. 

Milenkovic, et al, (2013) likewise applied the ARIMA in a state space form to forecast railway passenger 

traffic and model the rail passenger demand on Serbian railways addressing trends, seasonal and cycle 

variations providing a solid framework for modelling rail passenger traffic.    

Alblooshi et al. (2024) investigated using three forecasting models SARIMA, Holt-Winters and Long 

Short-Term Memory (LSTM) to predict ridership demand for the Dubai Metro. SARIMA emerged the 

most accurate of the three models and effectively captured long trends and seasonal variations.  

Guleria (2024) addressed the inaccuracies of forecasts in India particularly for the Delhi Metro due to 

unreliable travel demand models. It explores the application of probabilistic regression models 

especially the Gaussian, Negative Binomial, and log linear models to improve demand prediction.  

 

Table 6: Summary of Studies of Traditional Ways for Demand Forecasting in Metro Operations (Source: AU 

2025) 

Study Statistical 
Method Used 

Statistical 
tool 

Main Innovation Time Horizon 

Mendhe et al. 
(2025) 

Time Series 
Forecasting 

ARIMA Used ticket reservation 
data to forecast metro 
demand with seasonal 
accuracy 

Short to 
Medium Term 

Anvari et al. 
(2016) 

Time Series 
Forecasting 

ARIMA – Box 
Jenkins  

High-accuracy long-
term demand 
forecasting using real 
metro data 

Long term  

Kato et al. 
(2017) 

Mathematical 
Modelling  

Custom 
demand 
model 

Supported Tokyo’s 15-
year rail strategy with a 

Long term  
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Study Statistical 
Method Used 

Statistical 
tool 

Main Innovation Time Horizon 

calibrated demand 
model 

Chuwang & 
Chen (2022) 

Time Series 
Forecasting  

ARIMA, 
SARIMA, 
Facebook 
Prophet 

Compared models to 
identify best performers 
for daily and weekly 
demand 

Short to 
Medium 

Milenković et 
al. (2013) 

Time Series 
Forecasting 

ARIMA 
(State-
Space) 

Modelled rail demand 
accounting for seasonal 
and cyclical patterns 

Long 

Alblooshi et 
al. (2024) 

Time Series 
Forecasting 

SARIMA, 
Holt-Winters, 
LSTM 

Identified SARIMA as 
best for long-term metro 
demand in Dubai 

Long 

Guleria 
(2024) 

Probabilistic 
Regression 

Gaussian, 
Negative 
Binomial, 
Log-Linear 

Improved demand 
accuracy in India by 
correcting model bias 
from unreliable data 

Medium 

 

Collectively, these studies affirm that statistical forecasting methods are popular and most effective 

when historical demand data is available, and particularly useful for medium- to long-term planning 

where recurring temporal patterns can be exploited. However, they also underscore a significant 

limitation: the inability to forecast demand at new or future stations lacking historical data. This 

constraint is especially problematic during metro system expansions or when planning for newly 

urbanised areas, scenarios in which statistical methods become insufficient. It is precisely in such 

contexts that AI and data-driven modelling techniques offer a compelling alternative. 

 

4.2.3 ARTIFICIAL INTELLIGENCE (AI) IN DEMAND FORECASTING 

AI has emerged as a powerful complement to statistical methods in passenger demand forecasting, 

particularly in areas where conventional approaches lack flexibility or the capacity to handle complex, 

nonlinear, or data-sparse environments. Table 7 shows the summary of studies on the use of Artificial 

intelligence in demand forecasting in metro  

In recent years, the integration of artificial intelligence, advanced statistical and machine learning 

techniques has transformed metro transit demand forecasting leading to greater accuracy and 

enhanced operational efficiency in urban rail systems (Alblooshi, et.al, 2024). Contemporary research 

explores AI-based methodologies to improve forecasting precision.  Machine learning, a sub part of AI 

enables where machine learning algorithms performs the task without being explicitly programmed (Nar 

& Arslankaya, 2022).  

Celebi et. al (2009) applied neural networks to develop short-term passenger demand forecasting 

models to be used in the operational management of light rail services. Similarly, Nar & Arslankaya 

(2022) employed a hybrid approach combining regression analysis with machine learning algorithms, 

including artificial neural network to forecast passenger demand. Their study addressed demand 

prediction on both line and station levels, demonstrating the effectiveness of multiple techniques.  
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In the context of Thailand’s Metropolitan Rail Transit Purple Line, Kusonkhum et. al. (2022) examined 

several machine learning algorithms such as artificial neural networks, random forests, and decision 

trees for demand forecasting. Their comparative analysis revealed that the artificial neural network 

model outperformed the others predictive accuracy, making it the most suitable for forecasting 

passenger demand on that rail line.  

Ding et al. (2024) addressed the challenges of station level metro ridership prediction under expansion 

scenarios. They proposed a Metro-specific Multi-Graph Attention Network to predict long-term station 

level ridership during network expansion planning using data from Shanghai Metro, China.  

Feng et al. (2021) proposed an improved Wasserstein Generative Adversarial Network (WGAN) model, 

a type of deep learning model for railway passenger demand forecasting using web search terms data. 

The improved WGAN model can generate virtual data to expand real dataset and predict demand more 

effectively, testing in Beijing revealed that changes in the web search behaviour precede changes in 

railway demand by about one month making it useful for early forecasting.  

Gwon et al., (2024) focused on short-medium demand forecasting, the study presented a model for 

predicting hourly subway ridership based on weather conditions using three artificial intelligence 

algorithms, multiple linear regression (MLR), Random Forest regression (RFR) and Multi-Layer 

Protection (MLP) and it showed the model outperformed the alternative models in accurately predicting 

subway ridership.  

 

Table 7: Summary of research on the use of AI for Demand Forecasting in Metro Operations (Source: AU 2025) 

Study Model/Method AI tool Main 
Innovation 

Time 
Horizon 

Celebi et al. (2009) Neural Networks Deep 
learning  

Neural 
networks for 
short-term 
passenger 
demand 

Short-term 

Nar & Arslankaya 
(2022) 

Hybrid 
Regression + 
ANN 

Machine 
Learning 

Combining 
regression 
and ANN for 
station/line 
demand 
forecasting 

Short-term 

Kusonkhum et al. 
(2022) 

ANN, Random 
Forest, Decision 
Tree 

Machine 
learning  

Comparative 
analysis of ML 
methods; 
ANN best 

Short-term 

Ding et al. (2024)  
 
Metro-MGAT 

Deep 
Learning 
(Graph-
based) 

Long-term 
ridership 
forecasting 
under 
expansion 
scenarios 

Long -term 
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Study Model/Method AI tool Main 
Innovation 

Time 
Horizon 

Feng et al. (2021) Improved 
WGAN 

Deep 
Learning 
(GAN) 

Forecasting 
railway 
demand using 
web search 
terms 

Short to 
Medium-term 

Gwon et al (2024) MLR, RFR, MLP 
Comparison 

Machine 
Learning 

Predicting 
subway 
ridership with 
weather 
influence 

Short to 
Medium-term 

 

In conclusion, although the body of research applying AI to passenger demand forecasting is still 

evolving, there is a clear and growing interest in leveraging deep learning and advanced machine 

learning techniques to overcome the limitations of traditional models. 

 

4.2.4 SUMMARY 

To conclude, traditional statistical forecasting models such as ARIMA and regression-based 

approaches have proven effective for short- to medium-term passenger demand forecasting when 

historical data is readily available. However, these methods face clear limitations in scenarios involving 

network expansion, where future stations lack historical ridership records. In contrast, recent advances 

in artificial intelligence and machine learning offer a powerful and promising alternative. AI-based 

models, particularly those leveraging deep learning and graph-based techniques, demonstrate strong 

potential to address the inherent complexities of demand forecasting in data-scarce and dynamically 

evolving transit systems. This emerging shift marks a significant step toward more adaptive, data-

informed, and forward-looking urban transportation planning. 

 

4.3 TIMETABLE CREATION SUPPORT USING GTFS FEEDS 

4.3.1 BACKGROUND 

Timetable creation is undoubtedly a key component of metro operations, which has a direct influence 

on service performance, passenger satisfaction and is the backbone of a successful metro service. To 

balance operational limitations with varying demand, timetable creation has historically depended on 

manual modifications and heuristic approaches. However, as transit and timetabling data has become 

more widely available and more accessible, experts are looking into data-driven approaches to improve 

service reliability and timetable efficiency. General Transit Feed Specification (GTFS) has become the 

backbone of timetabling, providing a valuable dataset for optimising, analysing as well as automating 

timetable creation. The current body of research on timetable creation using GTFS is examined in 

literature review, looking in further detail at tactical planning as well as frequency of service. 
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GTFS is a standardised data format that provides a structure for public transit agencies to describe the 

details of their services such as schedules, stops, fares, etc (GTFS, 2025). Consequently, GTFS 

enables public transit agencies and operators to publish data within a format that is compatible with a 

significant amount of software programs, including trip planners, e.g. Google Maps. Therefore, this 

allows passengers to use their mobile devices (e.g. smart phones and tablets) to quickly obtain transport 

information. GTFS has two main parts, GTFS Schedule and GTFS Realtime. GTFS Schedule provides 

basic static transit information such as routes, schedules and fares in simple text format for easy 

creation and maintenance. GTFS Realtime contains more dynamic information such as trip updates 

and service alerts, which can work in conjunction with GTFS Schedule to inform transit users and 

operators of service disruptions and updated arrival times. It has been increasingly being used to 

optimise transit services. 

4.3.2 OVERVIEW OF TIMETABLE CREATION USING GTFS FEEDS 

A significant advantage of GTFS data is the versatility, Antrim and Barbeau (2013) illustrate the diverse 

applications of GTFS data, highlighting its versatility and ability to enhance public transport information. 

They explore how GTFS data facilitates journey planning, real-time departure information, accessibility 

for passengers with reduced mobility as well as providing data to facilitate research in transportation 

planning. Additionally, the report discusses how GTFS can facilitate open data platforms, third-party 

applications and interaction with other mobility services to foster innovation and accessibility. There are 

plenty of opportunities available for transit and intermodal operators and stakeholders to leverage open 

GTFS data and offer a wide range of new information services to the public or their internal operations 

at minimal or no expense to the organisation. To conclude, the study emphasises how crucial and 

valuable GTFS is to improve the effectiveness, accessibility, and user experience of public transit. 

Whilst the versatility and accessibility of GTFS data is clear, Wessel and Farber (2019) analyse the 

accuracy of schedule-based GTFS data in measuring accessibility, specifically how it compares to real-

life departure times. Later examining how GTFS estimated times can vary from actual departure times 

due to service disruption and variation in transit operations. Interestingly, the study highlights the 

limitations of relying solely on static GTFS data because it has been found that it potentially 

overestimates reliability as it assumes all services adhere to the schedule. Wessel and Farber therefore 

theorised that by combining both static GTFS data and real-time information, this would lead to more 

accurate transport information. Overall, this study found that greater research is required to fully 

comprehend the unpredictability and diversity of transit travel. Except in extremely basic situations or 

in situations where schedule adherence is known to be exceptional, schedule data alone might not be 

enough to show how access varies over time across transit networks. Understanding how transit travel 

time variability is seen as a quasi-stochastic phenomenon and utilised to guide itinerary planning, mode 

selection, and route selection is necessary.  

Furthermore, another significant benefit for the use of GTFS data in timetable creation is the strategic 

advantages to future timetables and research. Aemmer, Ranjbari and MacKenzie (2022) illustrate that 

in addition to facilitating faster, safer, and more efficient travel for users, timely, transparent, and 

trustworthy public timetable data also opens research opportunities that can aid with better planning 

and service delivery. They highlight how gaps still exist in the UK despite continuous attempts, impeding 

the progress of the previously indicated advantages. These shortcomings make the UK transport 

system less resilient, restrict research opportunities, and put the country at a competitive disadvantage 

internationally. The advantages of adopting an integrated data management perspective are illustrated 
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by international best practices in the US and Europe, which offer examples of how comparable problems 

might be resolved. A UK-wide integrated public transport open-data program that emphasises data 

governance, consistent data formats, and stakeholder involvement is strongly recommended. In 

addition, it is crucial to make historical data accessible, work towards data standards strategically, and 

support operator and stakeholder skill development. 

Illustrating the clear advantages of GTFS data, McHugh (2013), illustrates how the most significant 

advantage is the global reach of GTFS standard information, therefore, this allows for products and 

information to be acquired by millions of people daily. Furthermore, for potential passengers who are 

unfamiliar with a city or region, passengers can be provided with information easily, because of GTFS 

data, through a familiar interface and can find alternative modes to driving with ease. The author 

highlights that by providing enhanced and easy to recognise information, this improves service delivery 

for the citizens of a respective city or region, all at a low cost for the local government and operators. 

However, Newmark (2024) mentions that the benefits of GTFS data are only “dependent on the 

underlying quality of the data.” Within the literature, Newmark evaluates the quality of GTFS data, which 

is essential for many service timetabling and information systems. Interestingly, Although GTFS has 

been widely used, it is apparent that little study has been done on methods to evaluate its accuracy. To 

address this, Newmark presents a variety of methods and metrics to assess and analyse both the 

temporal accuracy and spatial accuracy of both GTFS Realtime feeds and GTFS schedule feeds. The 

metrics were developed to provide public transport operators and organisations a clear insight into the 

quality of the information they supply to their passengers and wider stakeholders, specifically 

highlighting the significance of the inaccuracies on customer satisfaction. To assist transport operators 

and travel organisations, the metrics that were set out within the report, will allow operators to constantly 

analyse the accuracy of the information and GTFS data provided to their passengers. 

Presenting an interesting perspective into timetabling, Sun et. al. (2014), looking at Demand 

Responsive Services illustrate three models to design demand-responsive timetables for metro 

services, using data gathered from smart-cards to achieve a greater understanding of spatial-temporal 

passenger demand. As a result, timetables created that are demand-sensitive are advantageous to 

reducing passenger cost. The research presents that the reliability of the metro service depends on the 

design of the timetable. A typical timetable, based on peak and off-peak demand, is a simple and widely 

used approach in day-to-day service operations. Train overcrowding and lengthy station wait times 

could come from such a strategy's inability to satisfy dynamic temporal passenger demand. A significant 

development is the introduction of smart cards and their ability to illustrate temporal and spatial demand 

on a detailed level across an entire network. Consequently, Sun et. al. (2014) proposes three differing 

models to optimise and design demand sensitive timetables. The first model seeks to ensure the 

timetable is more dynamic, the second model focuses on capacity constraints, extending where 

necessary and the third model aspires to design a demand-sensitive peak and off-peak timetable with 

capacity constraints considered. These three models were tested on the Singaporean Metro, the three 

models were evaluated and analysed against a plethora of varying parameters. Following the testing of 

the models it was found that the capacitated model illustrated the best performance whilst under fixed 

capacity constraints, however, the uncapacitated model provided optimised rolling stock configurations 

depending on the time. Finally, the peak and off-peak model provided lower performance, it is much 

simpler to operate from an operator’s perspective and easier to understand for passengers, as opposed 

to the utilisation of dynamic headways. 
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Regarding transit within city centres, traffic signals can understandably cause inaccuracies in GTFS 

real-time data, as delays cannot be predicted whilst waiting for signals to clear. A strategy to resolve 

this is transit signal priority, this is highlighted by Zhou et. al. (2024), signals will recognise transit and 

attempt to reduce the waiting time, consequently, benefitting the reliability of the service and of the real-

time data. The major obstacle regarding the deployment of GTFS-based TSP in GTFS-Real-time is 

latency. To address this, the study analysed data from 4 transport operators to identify the problems 

with late data. Experimental findings show that two machine learning models outperform the baseline 

strategy, which uses hourly averages for dwell times and vehicle speeds. By addressing several 

problems with the available GTFS data, this paper improves the viability and usefulness of GTFS-based 

adaptive TSP. This study stresses bus location estimation and offers a practical way to adjust for latency 

and enhance bus location and dwell time estimation, in contrast to traditional methods that concentrate 

on bus arrival time estimation. 

Finally, to give an overview, Fan and Li (2019) highlight that the emergence and evolution of GTFS 

being an open standard format has created a plethora of opportunities for assessment, benchmarking, 

research and to monitor service performance. The contents of GTFS data, consisting of both temporal 

and spatial aspects, this standard transit feed data format has proven to be quite valuable. Studies that 

combine those two, however, are still making only moderate and gradual progress. More spatially 

disaggregated, personalised, and time-aware accessibility measurements are needed to enhance 

these studies, as are more advanced spatial computational methods to operationalise these metrics 

and enhance the measurement of equity and transit accessibility in empirical research. 

To conclude, the literature reviewed in this section present a clear overview of the benefits and some 

drawbacks regarding GTFS data. As the literature illustrates, a clear advantage for operators and 

agencies for using GTFS feeds is the versatility, foundation for research and strategic planning, ease 

of access and opportunities for monitoring performance. Whilst, on the other hand, ensuring data is of 

high quality is important, the benefits of GTFS data, has allowed academics, agencies and operators 

to plan timetables strategically and tactically, improving service delivery for passengers. A significant 

trend across the literature is the versatility of GTFS data, to allow for future research and development 

of new timetables. 

4.3.3 TACTICAL PLANNING USING GTFS DATA 

Looking in greater detail at tactical planning, across all modes of transportation, services are susceptible 

to uncertainties that can disrupt train services, delay numerous trains, and spread throughout the 

network, even with the most advanced communication, monitoring, and control systems. Coviello et. al. 

(2023) illustrate that; “Strategic planning is critical in helping railways develop optimal programs for 

improving their business by making service more attractive and efficient.” As a result, the advantages 

of tactical planning are clear for operating reliable and resilient metro services, the data presented by 

GTFS feeds can provide in-depth analytics for timetable planners, highlighting key locations across the 

network as to where disruption can occur. 

Bouman (2022) criticises the conventional method of allocating buffer times using predetermined, set 

values, illustrating that it limits operational capacity but also, necessitates timetable planners input to 

modify the timetable. Consequently, she presents a data-driven approach for creating tactical planning 

guidelines for buffer times that can be used while creating the original schedule. This method predicts 

mean secondary delay and hindrance percentage, two important measures of delay propagation, using 
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multiple linear regression analysis. To test the methodology, Bouman used analysed the Dutch rail 

network on services between Haarlem, Leiden Central and Schiphol Airport. The investigation showed 

that the selected timetable characteristics may be used to forecast the mean secondary delay and 

hindrance percentage with an accuracy of 90.7%. Interestingly, the impediment percentage exhibited a 

considerable correlation with the scheduled buffer time, although the mean secondary delay was not 

significantly affected by it. This suggests that by properly allocating buffer hours, trains are less likely 

to impede one another, improving timetable stability overall. Therefore, by tactically planning a timetable 

with effective headways, service reliability and performance can be maintained and improved. 

Looking at a metro perspective Torres (2024) addresses the challenges of tactically planning and the 

synchronisation of timetable creation, with a focus on the Porto Metro. Torres suggests that differing 

types of rolling stock and varying passenger demand are the two significant barriers to a successfully 

synchronised timetable. Consequently, to address the barriers, Torres provides a modelling framework 

that considers the factors to improve the reliability and efficiency of the timetable. Presenting a data-

driven approach for the creation of synchronised timetables that take into account varying passenger 

demand and a variety of vehicle types. The model incorporates the prioritisation of long-distance 

connections whilst ensuring better services within peripheral areas. To test the methodology, Torres 

employed six measures, including two manually determined bunching indicators, the study then 

compares the optimised timetables with current schedules placed under various scenarios to assess 

the model. The outcomes show notable gains in synchronisation despite technological challenges and 

iterative modifications. It was important to note however that whilst the models have minimised the 

bunching of services, it was not eliminated. 

Furthermore, Schettini, Jabali and Malucelli (2022), discuss how to better coordinate the operations of 

metro lines with fluctuating passenger demand. Typically, metro operators employ headways between 

services, however, this may not effectively handle changing passenger demand patterns. Therefore, 

the study proposes a demand-driven timetabling strategy which is designed to allow trains to operate 

without a concrete timetable. Features such of short turning, allowing trains to reverse prior to reaching 

the terminus of the line is a crucial component of this approach. The study created a mixed-integer 

linear programming model specifically designed for a bidirectional metro route to test this method in 

practice. Presenting an explicit approach that makes use of cut generation techniques and two classes 

of valid inequalities, they significantly improve computing efficiency. Computational experiments on both 

simulated and real-world metro lines are used to assess the methodology. To conclude, the outcomes 

show how well the suggested algorithm works and emphasise the advantages of the demand-driven 

timetabling approach, especially in terms of cutting down on passenger wait times. 

Undoubtedly, one of the most significant performance metrics in public transport operations is reliability. 

Van Oort and van Nes (2008) highlight that there is a plethora of factors that contribute to delays within 

an urban environment, as a result, causing extended waiting times for passengers. It is illustrated that 

due to the short nature of journeys within metropolitan areas, passenger waiting times have significantly 

increased in metropolitan areas due to service unreliability. In addition to extended journey and wait 

times, services can bunch as a result, consequently, reducing comfort and decreases the likelihood of 

passengers finding a seat. Similarly, tourists may be unsettled by the uncertainty around the reliability 

of transport. As a result, the study hypothesises that “during the strategic and tactical planning phases 

reliability can be taken into account and be improved.” To assess the impact of unreliability of services 

on passengers, a case study of the tram network in The Hague, is used to better comprehend the 
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components behind the unreliability. Following the collection of data, an analysis of the components of 

real trip time is conducted. Latterly, solutions are proposed and examined. It has been demonstrated 

that travellers experience less additional waiting time when different parameter values are used in 

timetable preparation than are currently utilised. Additionally, the impact of explicitly considering 

reliability in the design of line length, stop spacing, and coordination mechanisms is examined. Overall, 

the study demonstrates that reliability improvements can be already achieved during the planning 

phases of timetabling.  

Furthermore, Bešinović et. al. (2021) examines current advancements in railway timetabling. To fully 

utilise advanced railway systems and offer more capacity, as well as more sustainable, resilient and 

efficient services both under normal circumstances and during disruptive occurrences. Demonstrating 

the necessity of mathematical models and sophisticated timetabling modelling and analytics. 

Timetabling approaches are presented in the study according to their amount of complexity, 

performance goals and planning phases, ranging from strategic to near real-time. The study reports 

that most research has concentrated on enhancing efficiency and robustness, with only limited 

consideration regarding resilience. As well as focused mostly on timetable creation, with little attention 

paid to timetable modifications. The report assists future research in identifying current and emerging 

patterns and innovative timetabling strategies. Enhancing this by providing real-world implementation 

examples and practical considerations, to illustrate the benefits of greater, more advanced timetable 

planning. The study is of significant value to timetable planners, giving an overview of areas that are 

frequently overlooked. 

Overall, tactical planning can significantly enhance timetables both in terms of reliability and resilience. 

Across the literature a key trend is that reliability and performance improvements can be made through 

tactical planning, examining headways, demand-responsive approaches, reliability enhancements and 

innovative timetabling strategies. As GTFS offers standardised, machine-readable transit data, GTFS 

feeds are essential for conducting in-depth analyses of the current timetable and operation. Operators 

can use this to highlight any inefficiencies, analyse various scenarios, and adapt the timetable, which 

directly increases network resilience and timetable dependability by utilising GTFS data. Additionally, 

GTFS feeds simplify the incorporation of real-time data, which supports more flexible and responsive 

network planning and resilience. 

4.3.4 GTFS DATA ENHANCING FREQUENCY OF SERVICE 

A further area of analysis is regarding Frequency of Service, analysing frequency using GTFS feeds. 

The literature highlights that tools are available for operators to use, utilising GTFS data to enhance 

timetables and set an optimal frequency. Finally, to enhance frequency, decision-making by service 

controllers needs to be optimised, utilising key strategies such as short-turning, express running and 

bunching to provide the optimal frequency for passengers. 

A significant aspect of passenger experience is waiting times, Canavan et. al. (2019) illustrates that 

many metro networks across the globe are facing increasing demand and will need to provide more 

capacity in strategic corridors. To alleviate this, the predominant strategy to boost capacity on existing 

lines with fixed infrastructure is to increase frequency. By carrying more passengers as well as faster 

journey times, higher frequencies can also improve efficiency by maximising the use of rail 

infrastructure, boosting operator revenues, as well as, providing broader economic advantages to the 

cities they serve. The study goes on to review a community of metro operators across 17 high frequency 
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lines, this being classified as having at least 25 trains per hour. The paper then illustrates the various 

constraints to high frequency operation, being categorised into five types; “relating to signalling and 

train control, station and train crowding, fleet, terminal turnarounds, and service complexity.” Following 

this, solutions to mitigate these issues are presented, highlighting that metro operators must adopt a 

comprehensive strategy to attain the highest frequencies. It is important that operators identify all the 

constraints that can prevent the full benefits of high frequency operation, all primary, secondary and 

tertiary constraints. Finally, the paper provides guidance as to how to maximise frequency, 

consequently, delivering benefits to passengers, agencies and wider stakeholders.  

Presenting a recent perspective that has affected all operators globally, Gkiotsalitis and Cats (2022) 

portrays how the impact of the COVID-19 pandemic had on the public transport sector. Following the 

restrictions across countries, ridership declines of up to 90% were noted in some regions. As a 

consequence, public transport operators had to urgently respond to how restrictions and social 

distancing policies affected daily operations and passenger experience. The paper evaluates the 

consequences of a plethora of social distancing policies, presenting a model for redesigning public 

transport services meanwhile, taking operational, passenger and revenue loss-related costs into 

account. The methodology provides the optimal vehicle redistribution across the network for various 

social distancing circumstances, the paper portrays that for metro networks recovering and adapting 

following the COVID-19 pandemic, governing bodies and operators can utilise the model and findings 

as a tool to assist their own networks.  

The impact of service control decisions on high-frequency metro lines service performance and 

reliability is examined by Carrel et. al. (2010). The report examines the operational choices made by 

controllers, such as holding, expressing, or cutting trains short, and assesses the effects these choices 

have on passenger satisfaction and service reliability. The identification of shortfalls in previous 

research is highlighted and the paper proposes a framework to mitigate some of the shortfalls identified. 

A significant element of the framework is the description of the environment in which decisions are 

made within an operations control centre. A plethora of endogenous aspects are highlighted that 

influence the reliability of the system, found by the research completed by visiting controls centres. 

Furthermore, the management of personnel and rolling stock, safety, and infrastructural capacity are 

important factors that are considered by controllers and decision makers in operation control centres, 

as well as, maintaining adequate service levels to minimise disruption to passengers. Consequently, 

the paper found that operations controllers had a strong preference for manageable and robust control 

strategies, as a result of the uncertain environment in which the control centre functions. In order to 

prove this, a case study was presented where controllers had to respond to two comparable incidents, 

using distinct recovery tactics, primarily due to crew management concerns, demonstrating how crucial 

it is that there is a thorough grasp of the objectives and limitations service controllers encounter on a 

regular basis. 

Overall, throughout the literature, there are several key points to highlight how service frequencies can 

be enhanced. Operators should identify the constraints that can prevent high frequency operation, as 

well as leveraging models to assist with strategic planning to enhance services. To achieve this, GTFS 

data is crucial, as it provides a standardised framework for the analysis of the current timetable, service 

patterns and vehicle data. GTFS data can allow operators to simulate potential changes to services, 

including increasing frequency. Furthermore, the training of service controllers should be thorough, 
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ensuring that the GTFS-derived insights can be applied, so that the full potential of the network can be 

achieved, whilst minimising disruption to passengers. 

4.3.5 SUMMARY 

To conclude this literature review recent studies now emphasise how crucial data-driven strategies are 

becoming in transit planning. The benefits and versatility of GTFS data is clear, yet there is still more 

research and advancements possible. Delay mitigation in urban environments that hinder the reliability 

of the data is a significant area for future research and development. As well as this, operators and 

agencies must ensure that the data provided is of high quality with frequent assessment to maintain its 

quality and reliability. Furthermore, both tactical planning and frequency of service are two significant 

areas that must be considered when creating timetables. Tactical planning can vastly improve 

schedules in terms of robustness and dependability. A major theme in the literature is that strategic 

timetabling methods and reliability enhancements can all lead to increases in performance and 

dependability. Overall, there is literature that show how frequencies may be enhanced. To improve 

services, operators should use models to help with strategic planning and identify any limitations that 

would hinder high frequency operation. In order to maximise the network's capabilities and minimise 

passenger disruption, service controllers need also receive extensive training. With research and 

studies progressing within this field constantly, new data and the evolution of artificial intelligence will 

transform how timetables are created in the future. 

 

4.4 ANOMALY DETECTION 

4.4.1 BACKGROUND 

Recent methods for unsupervised and weakly supervised anomaly detection in surveillance video have 

achieved high accuracy by combining robust feature extraction, memory‑augmented reconstruction, 

and multiple‑instance learning frameworks. The deep multiple‑instance ranking approach of Sultani et 

al. demonstrated that MIL‑based video‑level supervision can effectively learn to identify anomalous 

segments in complex scenes, including violence and unattended objects. Building on this, Robust 

Temporal Feature Magnitude learning enhances the discrimination of abnormal patterns by adjusting 

temporal feature magnitudes during training to reduce false positives from normal video segments (s 

Tian, Y., et al. (2021). Memory‑guided Normality frameworks employ an external memory module to 

model diverse normal behaviours and detect deviations via reconstruction errors, proving effective in 

crowded or dynamic environments such as metro stations. Complementary approaches use adversarial 

background‑agnostic training to improve robustness to scene variations and lighting changes common 

in transit hubs. There also exist more recent approaches like Transformer‑based attention models 

extract long‑range temporal dependencies and capture complex interactions among individuals, 

supporting accurate crowding and aggression detection.  

Multimodal fusion architectures like CFA‑HLGAtt leverage audio and visual streams to detect disruptive 

events, including loud disturbances or altercations that may go unnoticed in visual‑only systems (Wu, 

P., et al. 2020). Graph convolutional noise‑cleaner modules refine frame‑level predictions by mitigating 

label noise, which is valuable when curating large, unlabelled surveillance datasets. Together with 
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efficient autoencoder variants—such as ADNet with temporal consistency regularization—these 

methods can be deployed to monitor crowded platforms, flag abandoned luggage via motion saliency, 

and alert operators to aggressive behaviours in real time. By successfully integrating a selection of 

state‑of‑the‑art anomaly detectors into existing CCTV infrastructure, we think that systems supporting 

metro operations can achieve improved situational awareness and incident response using a 

combination or adaptations of these already existing techniques. 

4.4.2 UNCLEANLINESS DETECTION IN VEHICLE INTERIOR 

Detecting uncleanliness in metro environments represents a classic computer-vision challenge: the 

system must reliably distinguish between normal station fixtures and unexpected contaminants—litter, 

spills, graffiti—under widely varying lighting and occlusion conditions. We view this as an image-

classification and object-localization problem on individually selected frames of CCTV footage, to be 

considered in addition to the anomaly detection tasks on that same video footage. By treating each 

video frame as an independent still image, we can deploy high-throughput pipelines extracting frames 

at fixed intervals or based on some detected parameters like the amount of occlusion, running them 

through a detector, and flagging regions that deviate from learned “clean” baselines. This per-frame 

approach simplifies data requirements, avoids the expense of processing all video data, and still 

delivers low-latency alerts suitable for real-time cleaning dispatch. Subsequent sections will describe 

methods and strategies suitable for this problem. 

4.4.2.1 CONVOLUTIONAL NEURAL NETWORKS 

Convolutional Neural Networks (CNNs) are the core building blocks of many state-of-the-art vision 

models and convolutional layers are the core building blocks of CNNs (O’Shea, K., & Nash, R., 2015). 

A convolutional layer applies a set of learnable kernels (filters) across the spatial dimensions of its 

input—typically a three‑dimensional tensor of shape (height, width, channels)—to produce a stack of 

feature maps ( Figure 7). 
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Figure 7: Convolutional Layer (Source: Wikimedia Conv layer.png 2025) 

Each kernel is a small tensor whose weights are shared at every spatial location: during the forward 

pass, the kernel is slid across the input in strides of one or more pixels, computing at each position the 

dot product between the kernel’s weights and the corresponding input patch (plus an optional bias), 

thereby encoding local patterns such as edges or textures. 

Multiple kernels yield multiple output channels, with the idea that each can detect a different learned 

feature. By adding additional layers (Figure 8) increasingly abstract, hierarchical features are learned. 

 

Figure 8: Layer Visualization (Source: Chollet F. 2016) 
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4.4.2.2 RESIDUAL NEURAL NETWORKS 

Residual Neural Network (ResNet) is a convolutional architecture that introduced residual learning to 

ease training of very deep networks by reformulating each stack of layers as a residual function 𝐹(𝑥)+𝑥, 

adding the layers input to its output, enabling the successful training of hundreds of layers without 

degradation of accuracy. Each residual block comprises two or three convolutional layers with 

BatchNorm and ReLU activations, coupled with an identity “skip” connection that preserves gradient 

flow during backpropagation and mitigates vanishing gradients (He, K., Zhang, X., Ren, S., & Sun, J. 

2015). Models such as ResNet‑50 pretrained on ImageNet provide rich feature extractors whose final 

fully connected layers can be replaced and fine‑tuned for downstream tasks, producing hierarchically 

organized feature maps that capture edges, textures, and object‑part patterns useful for discerning 

clean versus soiled surfaces. For uncleanliness classification in metro operations, the pretrained 

ResNet backbone’s last pooling output is fed into a new binary classifier head trained on labelled 

examples of litter, spills, stains, etc., allowing the network to learn grime‑specific decision boundaries 

while leveraging the backbone’s general visual features. During fine‑tuning, one typically freezes early 

layers to retain generic features and updates only the deeper layers or added classifier with a low 

learning rate, reducing overfitting when data are limited. At inference, each station image or video frame 

passes through the network at real‑time speeds, with the SoftMax output yielding a probability of 

uncleanliness that can trigger automated alerts to direct personnel precisely where needed and possibly 

provide them with the image so they can judge the situation. 

4.4.2.3 YOU ONLY LOOK ONCE ARCHITECTURE 

You Only Look Once (YOLO) is a one‑stage, grid‑based object detector introduced by Redmon et al. in 

2015 that frames detection as a regression problem, dividing the image into cells and using a single 

convolutional network to predict bounding boxes and class probabilities in one forward pass. It employs 

a backbone–neck–head pipeline to extract multi‑scale feature maps, alternating convolutional layers 

and batch normalization to achieve real‑time speeds. The architecture has seen huge improvements in 

the last decade (e.g. Khanam, R., & Hussain, M., 2024), with the most recent iteration YOLOv11 

advancing this architecture with a refined CSP‑based backbone and enhanced neck for richer feature 

extraction, an anchor‑free head that predicts the centre of objects directly, and optimized training 

pipelines for improved accuracy and throughput. For uncleanliness detection in metro stations, we will 

also attempt to fine‑tune the pretrained YOLOv11 model on a curated dataset of litter, spills, stains, etc. 

by retraining the lightweight detection head on these objects while leveraging the existing backbone 

feature extractor. Deployed on live CCTV feeds, the model should flag any such irregularities so they 

can be raised with personnel, providing them with the image of the issue and the precise locations in 

real time. 

4.4.2.4 GENERALIZATION, FEATURE MAPS, TRANSFER LEARNING AND 

FEW/ZERO SHOT LEARNING 

Generalization in deep learning hinges on a model’s ability to perform well on data beyond the examples 

it saw during training, and convolutional feature maps lie at the heart of this capability. As an input 

image propagates through successive convolutional layers, each layer’s kernels extract increasingly 

abstract representations: early layers detect simple edges and colour gradients, intermediate layers 

capture textures and motifs, and deeper layers respond to object parts or even entire object prototypes 



 

 

 

 

 

PU — PUBLIC 

D6.3 – AI IN FUTURE METRO OPERATIONS  

    

68 

 

E 

(Wang, M., & Deng, W., 2018). These hierarchically organized feature maps serve as a rich, multi‑scale 

basis for recognizing patterns in novel inputs, enabling the network to generalize from limited examples. 

Transfer learning leverages this property by decoupling the feature extractor—typically a deep 

backbone pretrained on a large dataset such as ImageNet—from task‑specific heads (Figure 9). 

 

Figure 9: Feature Learning Diagram (Source: Wikimedia Feature Learning Diagram 2025) 

By freezing or lightly fine‑tuning the backbone’s weights, one can train new classifiers, regressors, or 

detectors atop its output feature maps using far less data and compute than training end to end. In 

practice, the pretrained feature extractor provides a stable embedding space in which new tasks’ 

decision boundaries can be learned with minimal overfitting. Building on transfer learning, few‑shot and 

zero‑shot learning seek to minimize or eliminate the need for labelled examples of novel classes. The 

robustness and richness of the backbone’s convolutional feature maps determine how well the model 

can bridge from seen to unseen concepts. Consequently, designing and training backbones for maximal 

generalization—through data augmentation, architectural choices that promote spatial invariance, and 

objectives that encourage disentangled representations—directly enhances performance in transfer, 

few‑shot, and zero‑shot settings. Features learned once can serve as a universal perceptual substrate 

for a wide array of downstream tasks, reducing the data and annotation requirements for training 

computer vision models on new tasks and classes using existing backbones, like that of the 

aforementioned YOLO models. 
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5 NEXUS DATA SCIENCE AND AI USE-

CASE CONCEPTS 

Metro stations and the trains themselves employ a great number of CCTV and surveillance cameras. 

Traditionally, they are monitored by human workers directly, however advances in Computer Vision 

over the past decade offer many opportunities to add automated image and video processing to this 

data, to offer gains in efficiency or an increase of service quality in terms of response times or error 

rates. 

In addition to video and audio feeds of CCTV cameras, modern metro systems generate a wealth of 

other data streams: passenger flow and journey records from ticketing and turnstile systems, GPS, 

signalling, and train telemetry data, environmental and infrastructure sensors (e.g., vibration, 

temperature, air quality); Wi-Fi, Bluetooth, and mobile-app interactions for real-time crowd density 

estimates; and maintenance logs from IoT-enabled equipment. In the following we discuss the use-

cases we identified together with metro operators present at the General Assembly meeting in Vienna 

and methods that could assist in these issues: 

• Predictive maintenance to extend asset lifespan while boosting maintenance efficiency and 

quality. 

• AI-driven knowledge management for internal procedures, enabling fast retrieval of security 

and safety protocols for specific tasks or entering an area. 

• Crowd forecasting and management, leveraging past event data to predict attendance for 

recurring events, anticipate first-time event crowds, model their likely routes, and provision 

extra services. 

• Real-time passenger assistance in native languages, guiding travellers through the network, 

alerting them to service outages, and suggesting alternative routes—especially valuable during 

major events. 

• Automated security monitoring, including detection of suspicious or abandoned objects (e.g., 

luggage) and continuous aggression/suspicious-behaviour surveillance. 

• Sanitary monitoring, spotting uncleanliness issues in real time to prompt targeted cleaning 

rather than broad end-of-line sweeps. 

• Dynamic automated train operation, adjusting speeds to conserve power and delaying station 

entry when no passengers are waiting in a high-frequency metro system, or dynamically add 

or remove trains from circulation based on demand. 

• Belongings tracking to identify pickpocketing incidents and match found items with their owners 

for efficient lost-and-found management. 

Based on our conversations with metro operators and our continued research and experience of the 

industry partners in the project, we focus our work on use-cases that are both being requested by 

operators and have a high probability of yielding positive outcomes within the scope of this project. 
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5.1 PREDICTION OF CROWDING BASED ON EXOGENOUS 

DATA SOURCES 

Genoa’s metro system, managed by the Azienda Mobilità e Trasporti (AMT1), forms a critical component 

of the city’s urban public transport network. The system, which runs along a striking northwest-to-

southeast axis across the city, is anchored by a single, yet strategically important, line that stretches 

7.1 kilometres. Originally launched in 1990, this line has evolved with several phased extensions, now 

connecting key urban and suburban areas while addressing growing transportation demands. By linking 

the suburban area of Brin in the Rivarolo district with Piazza Principe and Brignole —the two Genoa’s 

major railway stations— the metro not only caters to daily commuters but also supports regional 

mobility. 

5.1.1 GENOA METRO SYSTEM DESCRIPTION 

At its core, the Genoa metro is designed as a double-track system. This configuration facilitates the 

smooth operation of trains running in opposite directions on parallel routes, ensuring an efficient 

distribution of passenger traffic. With eight strategically located stations (s. Figure 10), the metro line is 

engineered to serve Genoa’s diverse urban landscape. Each stop has been carefully positioned to 

maximize accessibility to residential, commercial, and tourist zones: 

• Brin Station: Serving as the northwestern terminus, Brin is situated in the Certosa district. It is 

an essential node for residents in suburban neighbourhoods and provides a gateway into the 

metro network. 

• Dinegro Station: This station is positioned in proximity to the maritime station and the 

passenger port, making it a vital access point for maritime commuters and workers involved in 

port activities. 

• Principe Station: Beyond providing access to Genoa Principe train station—a major railway 

hub—this station plays a crucial role in intermodal connectivity, linking the metro with national 

and regional rail services. 

• Darsena Station: Located adjacent to the port area and the historic centre, Darsena acts as a 

convenient stop for both residents and tourists who wish to explore Genoa’s heritage sites. 

• San Giorgio Station: Found near the renowned Genoa Aquarium and the Old Port, this stop 

experiences high tourist traffic and supports leisure and recreational travel. 

• Sarzano/Sant'Agostino Station: This station caters to the university district and the 

surrounding historic areas, supporting both academic communities and residents of 

longstanding city quarters. 

 

 

1 https://www.amt.genova.it  

https://www.amt.genova.it/


 

 

 

 

 

PU — PUBLIC 

D6.3 – AI IN FUTURE METRO OPERATIONS  

    

71 

 

E 

• De Ferrari Station: Positioned at the heart of the city, De Ferrari is not only a hub for major 

office and retail complexes but also stands as a central point for administrative and business 

activities. 

• Brignole Station: Marking the southeastern terminus, Brignole is strategically connected to 

the Genoa Brignole train station and integrates city and regional bus routes, thereby forming 

an integral part of the multimodal transit network. 

 

 

With trains capable of reaching speeds of up to 60 kilometres per hour, the system is engineered to 

balance rapid transit with rigorous urban safety standards. Throughout the day, service frequencies are 

adjusted — typically resulting in intervals of seven to ten minutes — to accommodate fluctuating 

passenger volumes. 

 

5.1.2 USE CASE DESCRIPTION 

This case study sits at the intersection of the optimization activities planned in WP4 and WP6, thus 

ensuring synergy between the Work Packages and a concrete contribution to the overall project goals. 

Its integration across these packages ensures that operational innovations are not only theoretically 

robust but also practically viable. 

 

Figure 10: Map of the Genoa subway system (Source AMT 2025) 
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5.1.2.1 SPECIFIC OBJECTIVES 

A primary objective of this study is the development of an advanced predictive model tasked with 

estimating crowding levels at individual metro stations. By leveraging this model, urban public transport 

operations can benefit in several ways: 

• Operational Efficiency: Real-time and forecasted data will allow to allocate resources more 

effectively, thereby reducing over-crowding and improving passenger comfort. 

• Strategic Planning: The insights derived from predictive analytics support long-term 

infrastructure planning and scheduling decisions, facilitating an adaptable response to future 

demand surges. 

• Service Quality Improvement: Enhanced forecasting tools enable proactive management of 

station occupancy, thereby improving both the safety and overall experience for commuters. 

5.1.2.2 DATA SOURCES AND INTEGRATION 

The predictive modelling framework is built upon a comprehensive integration of heterogeneous data 

sources, which include: 

• AMT Operational Data: 

o Metro Service Data: This includes detailed operational parameters such as train 

frequency and historical crowding metrics. 

o Surface Transportation Data: Complementary information on bus schedules, service 

frequencies, and integration points with the metro network is also incorporated. 

• Exogenous Variables: 

o Meteorological Data: Weather conditions, such as rainfall, temperature variations, and 

other environmental factors, are considered since they significantly influence 

passenger flow patterns. 

o Event-Driven Data: Detailed schedules of local special events—including concerts, 

sports competitions, and cultural festivals—are used to refine predictions around 

exceptional demand periods. 

 

5.1.2.3 DEVELOPMENT METHODOLOGY 

Data Collection and Preprocessing 

The initial phase involves an exhaustive data collection process that aggregates and cleanses 

information from both internal AMT repositories and external datasets. Key steps in this phase include: 

• Data Aggregation: Combining disparate data streams into a unified, accessible format. 

• Data Cleansing: Employing imputation techniques —ranging from simple mean substitution to 

more advanced methods like K-Nearest Neighbours and regression-based imputation— to 

ensure the database is free from inconsistencies and missing entries. 
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• Feature Engineering: Developing new variables from raw data to capture temporal trends, 

peak-hour fluctuations, and station-specific usage patterns, which are crucial for model 

accuracy. 

 

Predictive Model Development 

The core of the development process hinges on deploying state-of-the-art machine learning algorithms. 

In this case, ensemble learning techniques such as the Random Forest algorithm are employed due to 

their robustness and ability to handle high-dimensional data while maintaining interpretability. The 

modelling process involves: 

• Hyperparameter Tuning: Systematic exploration of algorithm parameters through grid search 

and cross-validation to enhance overall predictive accuracy. 

• Model Validation: Rigorous assessment using techniques such as train-test splits and cross-

validation to obtain reliable performance metrics. Key evaluation metrics include Mean Absolute 

Error and Mean Squared Error, which collectively offer a comprehensive view of the model's 

precision and reliability. 

 

Deployment and Scalability 

Upon finalizing the predictive model, the solution is deployed as an API designed with modern 

containerization practices. Utilizing Docker to encapsulate the application environment, the system 

guarantees: 

• Consistency: Uniform performance across development, testing, and production 

environments. 

• Scalability: Flexible deployment options that allow the model to be scaled according to varying 

operational demands without compromising stability or speed. 

Reliability: Streamlined deployment and continuous monitoring ensure that the forecasting tool 

remains a robust asset for real-time and strategic decision-making processes. 

 

5.2 AI AND DATA SCIENCE USE CASE FOR DEMAND 

FORECASTING DURING NETWORK EXPANSION IN 

WEST MIDLANDS METRO SERVICE, BIRMINGHAM 

5.2.1 MOTIVATION 

Accurately forecasting passenger demand is essential for both the operational management and long-

term strategic planning of metro systems. This becomes especially critical during network expansion 

projects, where infrastructure investments must be aligned with projected levels of ridership. In rapidly 

developing urban regions such as Birmingham—a university city experiencing notable population 
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growth and urbanisation—anticipating demand at newly constructed or soon-to-be operational metro 

stations is vital to ensure service efficiency and appropriate resource allocation. 

Metro expansion typically involves three categories of station development: (1) new stations, which are 

introduced as part of the expansion; (2) updated stations, which already exist but are modified to 

accommodate additional lines or extensions; and (3) existing stations, which remain unchanged but 

may experience altered demand patterns due to network reconfiguration ( Ding et al., 2024). Designing 

effective expansion strategies therefore requires accurate demand forecasts not only for existing 

infrastructure but especially for those stations that lack historical data. 

Although considerable research has been conducted on demand forecasting and metro operations 

independently, limited attention has been paid to forecasting demand within the context of metro 

expansion. Most existing studies focus on short-term passenger flows such as station inflows and 

outflows rather than on demand forecasting that informs planning and investment decisions. Given the 

growing interest in applying deep learning-based methods to future urban and transportation planning, 

there is a compelling need to further investigate these advanced methods for planning metro systems 

of the future. 

 

5.2.2 PROBLEM DEFINITION CASE STUDY – WEST MIDLANDS 

METRO 

Population and economic growth are among the principal drivers of metro expansion in the West 

Midlands region (Pugh & Stubs, 2024). As part of its broader urban development strategy, the West 

Midlands Combined Authority is actively pursuing the development of a more integrated transport 

system that leverages existing rail, tram, and road networks. The West Midlands Metro, originally 

established in 1872 and later revived in 1999, plays a central role in this vision. 

The current metro tram line connects Birmingham New Street station with Wolverhampton St George’s, 

having been extended in 2015 to link Snow Hill station with the Birmingham city centre shopping district 

and Grand Central station. Since 2019, additional expansions have been underway, with the goal of 

completing all planned works by 2026 as shown in the extension map in Figure 11 below. These include 

new lines and stations to support growing demand, particularly in areas undergoing significant 

residential and commercial development (Metro Alliance, 2023). 

However, predicting passenger demand at newly added stations presents a major challenge, as no 

historical ridership data exists for these locations. Additionally, the interdependencies between evolving 

urban characteristics and future demand patterns must be considered. This case study proposes the 

use of AI to address these complexities and improve demand forecasting during metro expansion. 
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Figure 11: Metro expansion map (Source: Metro Alliance 2023) 

5.2.3 PROPOSED AI / DATA SCIENCE APPROACH  

Metro demand prediction under expansion scenarios is a difficult task as there is the absence of 

historical demand data for newly built stations and the relationship between urban context and station 

ridership. Additionally, the evolving network structure and scarcity of new or updated stations further 

complicate the problem, which renders deep learning models designed for short term prediction 

unsuitable.   

To address these challenges, this study proposes the development of a graph-based deep learning 

framework, drawing on the Metro-MGAT (Multi-Graph Attention Network) model introduced by Ding et 

al. (2024). This model captures spatial relationships among stations through a combination of 

geographic and semantic graphs. It allows for the integration of diverse data inputs, even in the absence 

of past ridership figures, by leveraging the structural attributes of the metro network and contextual 

urban features. 

In addition, urban simulation models will be incorporated to integrate land use zoning, demographic 

profiles, and transit-oriented development indicators. These will support the extraction of station-level 

spatiotemporal features, enabling the model to infer latent demand patterns for stations not yet in 

operation.  
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5.2.3.1 DATA REQUIREMENTS  

The following data sets will be required in order to accurately predict demand for the expansion, 

organised into key features  

Spatial features  

Network structure features: station centrality, number of connected stations, number of connected 

metro lines, transfer station status, network layer  

Built environment features: population density in Birmingham, land use mix, proximity to Point of 

Interests (POI) e.g. schools, malls, government buildings, historical land use change.  

Temporal features 

Planned station opening timeline: expected commissioning date, construction phases; 

Urban growth indicators over time: population growth rate, commercial development trends, historical 

land use change; 

Seasonal variation data: expected fluctuations in demand by time of the year e.g. tourism, season, 

holidays. 

5.2.3.2 DATA SOURCES 

Planned metro expansion map: West Midlands metro, Transport for West Midlands, Midland Metro 

alliance.  

Urban demographic and land use data: Office of National Statistics. 

Existing ridership and station data: operational metro lines for model training for model training and 

calibration. 

The proposed model is expected to provide accurate demand forecasts of station level demand at yet 

to be operated metro stations in West Midland metro which will inform service planning, guide 

infrastructure design, support long term investments and reduce the risks of over -or -under provisioning 

services.  
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5.3 TIMETABLE CREATION USING GTFS FEEDS 

5.3.1 OVERVIEW 

GTFS has become the standard for the providing information to passengers about transport networks. 

As well as, enabling public transport organisations to publish their transit data in a standardised format 

that a plethora of software programs can utilise. Consequently, the implementation of GTFS data in 

timetabling has an abundance of advantages for both operators and passengers respectively. This 

section will illustrate some of the key advantages of timetable creation using GTFS data, unlike the 

literature review, this section aims to illustrate the usefulness of GTFS in timetable creation, as well as 

providing some studies illustrating the specific areas to supplement the research. The key areas 

discussed within this paper are: 

• Standardisation. 

• Real-Time Information. 

• Strategic Planning & Modelling. 

 

5.3.2 STANDARDISATION 

Undoubtedly, the utilisation of GTFS feeds by operators allows timetables to be released to both 

passengers and transit agencies through an open standard format. The main structure of GTFS data 

consists of 7 files: agency.txt, routes.txt, trips.txt, stops.txt, stop_times.txt, calendar.txt and 

calendar_dates.txt. Consequently, the files illustrated contain all relevant information relating to the 

operations of a passenger service, including routes, stops, timetables and calendars. In addition to 

these 7 files, additional files can be added to the base 7 to provide additional information, such as 

ticketing, translations and connection information. “Over 10,000 agencies in 100+ countries use GTFS, 

ensuring consistent data for multi-agency trips and simplifying travel across regions.” (GTFS 2025) 

Consequently, software systems, such as journey planning applications, can extract the data and can 

present timetables and plan journeys, without the need for complex tools and extensive user knowledge 

of GTFS data.  

Furthermore, the output from GTFS data can be easily integrated into a plethora of applications, 

including internal systems for operators and public journey planners such as Google Maps. 

Consequently, a timetable can be integrated into journey planners and websites as well as, passenger 

information systems on trains and stations. Regardless of which source a passenger use to choose 

where to find real-time service information, the standardised use of GTFS means that this guarantees 

that they are receiving accurate and up-to-date information, as well as highlighting diversions and 

delays were applicable.  

The standard format is valuable as for regions with multiple operators, transport agencies can 

coordinate and present information from multiple operators on one platform with ease. In addition to 

assisting internal operations, by leveraging GTFS standardisation, this also guarantees that 

passengers, outside developers, and similar regional operators receive consistent, high-quality 

scheduling information. Furthermore, with GTFS being the industry standard, organisations can easily 

publish and edit data, without the need for significant investment, in both time and software. Importantly, 

an important aspect of GTFS data, is when intertwined with GTFS-RT (Real-Time) feeds, real-time 
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service updates can be provided to passengers allowing them to decide how to complete their journeys 

based on actual service performance, including cancellations, delays, and emergencies. Therefore, by 

using GTFS to create timetables directly results in enhanced customer satisfaction, with updated 

information being readily available for passengers. 

An interesting study is presented by Devunuri and Lehe (2024), in this study, a framework that answers 

natural language queries regarding GTFS data by utilising Large Language Models (LLMs). The 

framework’s open-source code is utilised in the chatbot “TransitGPT”, functioning by directing LLMs to 

generate Python code that finds and modifies GTFS data regarding the query. The AI application can 

complete a plethora of activities such as, calculations, data retrievals and interactive visualisations, 

without the need for the user to be proficient in programming and GTFS data. Interestingly, there is no 

fine-tuning or access to GTFS feeds or the LLMs that generate the code; they are directly entirely by 

prompts. Therefore, to illustrate the adaptability and effectiveness of TransitGPT, it is evaluated across 

100 tasks, utilising GPT-4o and Claude-3.5-Sonnet LLMs. Overall, the study demonstrates that the 

application can perform a plethora of GTFS retrieval tasks with solely text instructions, illustrating the 

future of GTFS applications and artificial intelligence. 

 

5.3.3 REAL-TIME INFORMATION 

As referred to earlier, a significant advantage of creating timetables with GTFS feeds is the ability to 

seamlessly integrate data with GTFS-RT (Real-Time), consequently providing performance monitoring 

for operators as well as live updates for passengers. There are two aspects to GTFS feeds: 

Static/Schedule and Real-Time. “GTFS Schedule contains information about routes, schedules, fares, 

and geographic transit details among many other features, and it is presented in simple text files” 

whereas “GTFS Realtime contains trip updates, vehicle positions, and service alerts, using the Protocol 

Buffers format.” (GTFS 2025)  

Consequently, operators and agencies can align scheduled services with real-time services, therefore, 

providing live timetables and service updates for passengers. Furthermore, this also allows for 

performance analysis, pinpointing disruption locations and the estimation of potential delays. 

Meanwhile, in real-time services can be modified dynamically to reduce disruption, by short-turning 

trains for example. With enhanced service information. Furthermore, real-time integration assists 

passenger information systems as well as journey planning apps, alerting passengers to precise wait 

times and potential disruption, in accordance with the original timetable. Therefore, by combining GTFS-

Schedule and GTFS-Real-Time, a static timetable becomes a dynamic and adaptable system, that 

passengers can trust and rely upon.  

An example of the implementation of GTFS data is presented by Furukawa et. al. (2023), the study 

illustrates that the dissemination of GTFS data amongst bus operators is progressing in Japan to 

achieve standardisation and the digitalisation of service data. Interestingly, whilst this data is publicly 

available, service operators were seemingly under-utilising it. Consequently, real-time information is not 

provided and the timings between intermediate stops remain constant throughout the day, as a result, 

buses are usually late, with unreliable information provided to passengers. Therefore, to enhance the 

reliability of bus timetables and to reduce the workload for operators to modifying timetables, the study 

proposes a method for improving timetables utilising GTFS Real-Time data to increase reliability as 
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much as possible without causing early departures. The selected operator within the study is the 

Yokohama Municipal Bus, operating in Yokohama, Japan. The operator runs over 10,000 vehicles daily 

on approximately 600 routes. Therefore, a significant number of bus stops are expected to have 

persistent delays, consequently, significant work is required to update the schedule. The study 

introduced a framework for leveraging GTFS data to create a timetable that represents the operating 

performance of all routes of the specified operator. Interestingly, on some routes, the method 

demonstrated a considerable reduction in the number of delayed buses. In greater detail, the method 

selects the earliest time that satisfies either the most frequent departure time at each stop or the time 

represented by the ratio of buses that allow for acceptable time changes, (Allowable Waiting 

Occurrence Rate - AWOR) as the new departure time. For example, the average delay time was 

lowered by a maximum of around 7 minutes when AWOR was set at 10% as opposed to before the 

enhancement. Additionally, it was noted that even with AWOR set at 0%, a reduction in delayed buses 

was identified, consequently, illustrating that some buses were not running on time on the existing 

timetable. This approach is thought to be a successful way to update timetables, particularly for bus 

routes in cities with significant passenger and traffic volumes. On the other hand, it is thought that a 

better schedule can be produced by considering the availability of bus stands and other various 

elements that provide enhanced time adjustments. Whilst this report focuses on buses, key lessons 

can be learned for metro operation at high frequencies, with service bunching, high passenger volumes 

and the consideration of various factors. 

 

5.3.4 STRATEGIC PLANNING & MODELLING 

Another benefit of creating timetables using GTFS feeds is the ability to strategically plan and optimise 

services. Timetable data can be systematically aligned with other datasets such as passenger usage 

figures, vehicle speed profiles and former timetables. Consequently, operators can form models and 

simulations to test potential new timetables, across various locations, time periods, routes and the 

resilience of the network and statistically analysing the results. Moreover, delays to services can be 

analysed, comparing GTFS-Schedule times, to the GTFS-Real-Time times, therefore, providing 

solutions as to where to modify timetables as to where the delays occur, for example, increasing running 

time. Overall, by modelling and pinpointing where delays occur, operators can create more reliable and 

attainable timetables, increasing service performance and decreasing service disruption, therefore, 

improving passenger experience and reliability. Furthermore, operators can plan and reduce the 

operational risks associated with pre-planned disruption, such as, engineering works, whereby services 

are modified, by using GTFS data and modelling the proposed timetable, risks can be reduced and 

potential problems identified.  

Furthermore, another study of interest is from Chapleau and Bisaillon (2013) highlighting the benefits 

of GTFS data and how it can facilitate the ability to create accurate and comprehensive models of 

transport networks is made possible by the development of transportation modelling technologies and 

the availability of very large datasets. The study presents a methodology for constructing a model of 

high spatiotemporal resolution that may offer fresh perspectives into the operational elements of a 

public transport network and the usage patterns of its passengers. As part of the study, the case study 

utilised is the four-line, 68-station Montreal subway system. A weekday with 883,599 person-trips is 

constructed using seven days of entry-only smart card validation data. Due to the fare validation only 
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indicating the entry station, trip chain logic must be employed for determining the exit station of each 

passenger. An algorithm is used to carry out the derivation and assessing the level of certainty. 

Individual vehicle and human movements can be explicitly represented in this simulation network. 

Consequently, there are two separate approaches to simulate the derived person-trips, firstly, the 

TRANSIMS 4 platform and an SQL-based assignment algorithm. Across both approaches, the 

outcomes of the schedule-based simulation enable the creation of dynamic load profiles of platforms 

and trains, therefore, the approaches presented in the study have potential to benefit other operators 

and agencies in both strategic and operational planning. To illustrate the outcomes of the study, the 

methodologies described within the paper allow for the incorporation of large data sets into a 

disaggregated public transport network modelling framework with high spatiotemporal precision. A 

significant quantity of schedule data is used to depict the dynamic characteristics of public 

transportation services. Meanwhile, smart card transaction data obtained through the entry only system 

is employed to create a non-synthetic population of travelling agents. The data can present an 

opportunity to enhance our comprehension of travel behaviour inside a system. A high-resolution 

representation of a significant transit system can be obtained by a completely disaggregate dynamic 

approach to network modelling, which employs either direct assignment or agent-based microsimulation 

techniques. For example, the modelling can estimate the individual demand for each of 1500 cars 

running at 30,000 different stop times, whereas a conventional approach to simulating the Montreal 

subway network would result in load profiles for eight directional lines and 68 stations. Consequently, 

this approach to network modelling can facilitate future studies into significant factors surrounding metro 

operation. In addition to allowing for the accurate calculation of vehicle, station, and platform occupancy 

at any given time, the system has potential to be employed to construct evacuation and emergency 

response plans, to allow operators to have strategies and contingency plans in greater detail. Therefore, 

the benefits of incorporating GTFS data into modelling has plenty of strategic advantages for both 

operators and agencies in timetable and strategic planning. 

 

5.3.5 SUMMARY 

To conclude, this section illustrates that by creating timetables using GTFS feeds, the advantages both 

for operators and passengers are clear. It is now clear how crucial data-driven strategies are becoming 

in transit planning. The benefits and versatility of GTFS data is clear, a standardised, easily modifiable 

and practical approach to timetabling can be facilitated by the utilisation of both GTFS-Schedule and 

GTFS-RT. Operators and agencies can leverage GTFS data to provide up-to-date, reliable and dynamic 

scheduling for both passengers and staff respectively. For long-term service planning, multimodal 

coordination, and real-time updates, GTFS is a powerful tool. An example of this has been utilised in 

New South Wales, Australia. Analysing General Transit Feed Specification (GTFS) and GTFS-Realtime 

data, the research intended to assess the efficiency of bus services in Greater Sydney. In addition to 

measuring bus infrastructure design features at a detailed spatial and temporal resolution, the study 

sought to assess stop-to-stop bus performance, including journey time and reliability metrics. The study 

aimed to highlight inefficient road designs and suggest fixes by comparing performance data with 

infrastructure features like bus lanes and stop locations. Consequently, the findings are intended to 

improve service dependability, guide infrastructure planning, and facilitate the integration of 

autonomous buses by minimising conflicts between autonomous and human-driven vehicles and 

optimising priority lane designs. (iMove Australia 2022) Overall therefore, adopting reliable, GTFS-
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based timetable solutions is arguably essential to creating transport networks that are more user-

centred, responsive, and efficient as public transport systems continue to develop. 

 

5.4 ANOMALY DETECTION APPLIED ON METRO 

OPERATION 

Anomaly detection is a critical aspect of various fields, including cybersecurity, finance, healthcare, and 

manufacturing. It involves identifying data points, events, or observations that deviate significantly from 

the norm. These anomalies can indicate potential issues such as fraud, network intrusions, medical 

conditions, or equipment failures.  

Traditional anomaly detection methods often rely on statistical techniques and rule-based systems. 

While effective to some extent, these methods struggle with complex, high-dimensional data and 

dynamic environments. AI-based approaches, particularly ML and deep learning, offer significant 

advantages. They can learn from vast amounts of data, adapt to changing patterns, and uncover subtle 

anomalies that traditional methods might miss. 

Despite its advantages, AI-based anomaly detection faces challenges. Ensuring data quality, handling 

imbalanced datasets, and interpreting complex models are ongoing issues. Additionally, the need for 

real-time detection and minimizing false positives remains critical. AI-assisted anomaly detection has 

made great progress, but still has its limits, with the following two being essential for our use case. 

• Data Quality and Quantity: The effectiveness of AI models heavily depends on the quality and 

quantity of the training data. Insufficient, biased, or noisy data can lead to poor model 

performance  

• Imbalanced Datasets: Anomalies are often rare compared to normal instances, leading to 

imbalanced datasets. This imbalance can cause models to overlook critical anomalies or 

produce biased results. Techniques to handle imbalanced data are essential but can be 

complex to implement. 

Anomaly detection for image classification involves identifying images or regions within images that 

deviate from the norm. This technique is crucial in various fields, such as manufacturing, healthcare, 

and security, where detecting defects, diseases, or unusual activities is essential. We are working on 

identifying an exact use-case for a method that could combine multiple types of events an operator 

should be made aware of. This could be an unexpected object on the train tracks, an abandoned or 

forgotten piece of luggage in a station or train or a potential aggression event.  

The idea is to employ automated image and video processing methods to draw special attention of 

security personnel to such events, to improve the response time to such incidents. Especially for the 

area on and around the train tracks additional sensors like ultrasound-based proximity sensors or solid-

state LiDAR could be considered, as reliably detecting an absence of any type of obstacle is much more 

important for this use-case than identifying the type of obstacle. There exist multiple large-scale 

datasets, but as the difficulty of extracting anomalous state from video is much higher than detecting 

objects on images or classifying an area as clean or unclean, which also means producing a model that 

can solve these tasks requires larger datasets and a lot of computational power. We are currently in 
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the process of reviewing available methods, datasets and how to access the CCTV data of the partners 

in the project in a way that complies with regulations. 

 

5.4.1 UNCLEANLINESS DETECTION IN VEHICLE INTERIOR 

This use-case has been chosen as a demonstrator for additional value that can be gained from 

automatically processing CCTV data in real-time. We collect a dataset of instances of clean and unclean 

metro stations and trains and do not have to train with or on data pertaining to crowds or individual 

people, designing an application for which the implications of the GDPR (EU REGULATION 2016/679) 

and AI Act are minimal, but also adds significant value to metro operators.  

The goal is to detect sanitary issues as soon as possible, so they can be dealt with by personnel as 

soon as possible to enhance service quality, make cleaning easier and to inform personnel ahead of 

time on the type of issue by providing a highlighted region of an image of the issue, so appropriate 

equipment can be prepared ahead of time, which is especially relevant if the worker has to enter a train 

in a station and clean while the train keeps its regular uninterrupted schedule.  

Using this method of real-time informed dispatch at strategically selected stations, the inconveniences 

of such issues can be minimized and the effort required by staff optimized. 

 

5.4.2 ADVANTAGES OF USING PRETRAINED MODELS 

Pretrained models have already been trained on large datasets, which means they can save significant 

time and computational resources compared to training a model from scratch. These models often 

achieve higher accuracy and robustness because they have learned from diverse and extensive 

datasets. This can be particularly beneficial in detecting subtle anomalies. Using pretrained models can 

significantly enhance the efficiency and effectiveness of anomaly detection systems.  
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Figure 12: New ML / AI Paradigm (Source: Virtual Vehicle 2025) 

There are several popular pretrained models that are widely used for various tasks, including anomaly 

detection. ResNet (Residual Networks) are some of the most notable ones. ResNet models, such as 

ResNet-50 and ResNet-101, are deep convolutional neural networks known for their ability to train very 

deep networks by using residual connections to prevent vanishing gradients. It is commonly used for 

image classification, object detection, and anomaly detection in visual data. 

Anomaly detection techniques are indeed used for soiling detection, particularly in the context of solar 

photovoltaic panels. For this use-case we intend to use a machine learning (AI) model based on CNN. 

CNN are widely used for image classification due to their ability to automatically learn hierarchical 

features from raw image data. For anomaly detection, CNNs can be trained to recognize normal 

patterns, and deviations from these patterns are flagged as anomalies. We intend to fine-tune a suitable 

open-source model using the data we collect and other open-source datasets, then evaluate the 

resulting methods performance on a reserved dataset with images exclusively from metro stations or 

trains. 

5.4.3 TRANSFER LEARNING 

Pretrained models can be fine-tuned on specific datasets, allowing them to adapt to new tasks with 

relatively small amounts of data. This is useful in domains where labelled data is scarce. Transfer 

learning is a powerful technique in machine learning where a model developed for one task is reused 

as the starting point for a model on a second task. This approach leverages the knowledge gained from 

a pre-trained model to improve the performance and efficiency of a new model on a related task. 
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A model is first trained on a large dataset for a specific task. This dataset is usually extensive and 

diverse, allowing the model to learn general features and patterns. For example, a model might be 

pretrained on ImageNet, a large dataset of images, to recognize various objects. 

The pretrained model is then adapted to a new, but related task. This involves using the pretrained 

model's weights and architecture as a starting point. The model is fine-tuned on a smaller, task-specific 

dataset. For instance, a model pretrained on ImageNet can be fine-tuned to recognize medical images. 

 

 

Figure 13: Image Classification with pretrained Networks (Source: Virtual Vehicle 2025) 

Since the model has already learned general features, it requires less time and computational resources 

to train on the new task. Transfer learning often leads to better performance, especially when the new 

task has limited data. The pretrained model’s knowledge helps in achieving higher accuracy. It mitigates 

the need for large amounts of labelled data for the new task. This is particularly useful in domains where 

data collection is expensive or time-consuming.  

In this work, a pre-trained ResNet50 model was used, which was originally trained on the very large 

ImageNet dataset with 1000 classes. As this is a CNN that is already capable of recognising general 

image features, only the last layer of the model was initially adapted. 

The model with this new layer was specifically trained to distinguish between two classes: clean and 

unclean, using softmax activation to calculate the probabilities for each class. 
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Figure 14: Transfer Function applied on Training Dataset; (Source: Hossain Y. et al. 2021 and Faizal K. 2023) 

This process of re-training with parameters already learnt on another dataset is called transfer learning. 

The dataset on which the model was trained consisted of urban images that were classified as ‘clean’ 

or ‘unclean’ to represent a left and a right set of scenes that would enable cleanliness classification 

down the line. 

However, after training on the urban data, the model was exposed to a completely new domain - the 

images from metro passenger cars - without any additional training or fine-tuning to this specially 

adapted domain. This process is known as "zero-shot domain adaptation", also known as zero-shot 

transfer. The model was applied directly to the images of this new, unseen domain, demonstrating the 

model's ability to transfer knowledge from one domain (urban images) to another, entirely new domain, 

without any explicit adaptation. 
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The preliminary results are promising, and detection is often well over 90% 

Figure 15: Image Classification - preliminary Results of Uncleanness Detection (Source: Instagram 2025) 
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6 GOOD PRACTICES 

AI has rapidly evolved from a theoretical concept to a practical enabler of smarter, safer, and more 

efficient metro operations. Within urban transit systems, AI-driven passenger flow prediction—powered 

by deep learning, sensor data, and sophisticated analytics—has become a crucial tool to address real-

time and strategic challenges, including congestion, delay management, and emergency preparedness. 

This chapter aims to dissect what actually works in practice when AI is applied to metro crowd 

forecasting, while also addressing the significant limitations, ethical concerns, and regulatory pressures 

that operators and developers face. Drawing from a wealth of academic literature and applied studies, 

we highlight exemplary models and frameworks, explore technical and operational hurdles, and reflect 

on the implications of the European General Data Protection Regulation (EU REGULATION 

2016/679) and the forthcoming AI Act for such systems. 

 

6.1 WHAT WORKS: BEST PRACTICES IN AI-DRIVEN 

CROWD FORECASTING 

AI applications in metro systems are showing increasing maturity. While no universal solution exists, a 

few common characteristics consistently emerge among successful implementations. In the following 

paragraphs, some examples from the findings in Chapter 4 are reported. 

6.1.1 LEVERAGING HETEROGENEOUS AND EXOGENOUS DATA 

Crowd prediction accuracy greatly improves when AI systems integrate heterogeneous data streams 

(e.g., historical ridership logs, ticketing records, weather forecasts, event calendars, social media 

activity, and even real-time station sensors). The move from single-source models to multimodal data 

fusion marks one of the most important shifts in prediction quality. 

The MDN-HDNN framework exemplifies this trend by incorporating both smart card data and social 

media feeds to capture irregularities like concerts, protests, or weather disruptions that traditional 

models often miss. The model showed improved prediction accuracy by identifying correlations 

between passenger spikes and increased online activity (Xue, et al. 2022). 

Similarly, the PULSE system uses a hybrid approach that customizes its models based on station-

specific attributes—such as proximity to the city centre, known peak hours, and local weather 

conditions—creating a tailored prediction engine for each location (Toto et al, 2016). This adaptability 

is key to maintaining performance across diverse urban geographies. 

6.1.2 ADVANCED AI MODELS: HYBRID NEURAL NETWORKS 

Deep learning architectures—especially when combined in hybrid forms—are particularly well-suited to 

handle the spatial-temporal complexities of metro systems. LSTM networks effectively capture long-

term dependencies in passenger flow trends, while GCN model the physical connectivity of metro 

stations. 

The ResLSTM model integrates GCNs (for metro topology), LSTM (for temporal trends), and ResNet 

(for spatial smoothing), creating a three-pronged model that processes inputs such as inflow/outflow 
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data, network layout, and external factors like weather (Zhang J. et al., 2021). LSTM model has been 

successfully tested on data from the Shenzhen metro, offering high fidelity in both routine and 

anomalous situations. 

Another noteworthy model is GCTN (Graph Convolutional and Comprehensive Neural Network), which 

combines Transformer-based sequence modelling with convolutional and graph techniques to handle 

both fine-grained time-series data and structural dependencies across lines and stations (Zhan Z., et 

al., 2022).  

6.1.3 STATION-SPECIFIC CUSTOMIZATION AND SCALABILITY 

Rather than applying generic models across entire networks, several high-performing systems adopt a 

decentralized or modular approach, customizing algorithms per station or cluster of stations. This 

granular methodology increases accuracy, as it reflects the distinct crowding patterns caused by local 

demographics, land use, and service frequency. 

The funFEM-based clustering approach, for example, groups metro stations in Seoul based on similar 

crowding behaviour, allowing forecasters to apply a tailored prediction method per cluster (Park Y. et 

al., 2022). This not only improves forecast precision but also facilitates better resource allocation (e.g., 

more staff or security in anticipated hotspots). 

 

6.2 WHAT DOESN’T WORK: CURRENT LIMITATIONS AND 

GAPS 

Despite these advances, metro AI systems are not without serious limitations. Many of which hinder 

broader deployment or long-term sustainability. 

 

The availability and quality of data are among the most persistent bottlenecks. While large cities often 

have extensive datasets from smart cards and surveillance systems, smaller or underfunded metro 

systems may lack the granularity or completeness needed for reliable prediction. Moreover, even in 

data-rich environments, real-time data streams can suffer from latency, missing values, or 

misalignment between sources. For instance, an event dataset might not update fast enough for 

prediction systems to react, while weather APIs can sometimes offer only region-level forecasts that 

are too coarse for local adjustments. In cases where anomalies occur – such as spontaneous 

demonstrations or infrastructure failures –models trained on historical patterns often underperform, 

revealing their dependence on predictable regularities. 

 

Many cutting-edge AI models, especially those using deep neural networks or attention mechanisms, 

function as black boxes. This lack of interpretability presents a serious challenge for metro operators 

who need actionable insights, not just predictions. 

Understanding why a model predicts overcrowding at a particular station is critical, especially if 

operational decisions (e.g., opening alternate exits, rerouting trains, or broadcasting alerts) are to follow. 

Without explainability features – like saliency maps, attention visualizations, or SHAP (Shapley Additive 

Explanations) values – these systems are harder to trust or validate, particularly during critical events. 
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While the academic literature celebrates accuracy improvements, real-time inference using advanced 

models remains a challenge due to their computational complexity. Many systems require GPU-

powered backends, cloud hosting, or parallel computing frameworks. This makes them difficult to adopt 

for cities with limited IT infrastructure or budget constraints. 

 

Finally, models trained in one context (e.g., Beijing) often struggle to generalize to another due to 

differing cultural behaviours, transit layouts, and demographic profiles. This reveals the need for transfer 

learning techniques or domain adaptation frameworks as a still a developing area in this field. 

 

6.3 GDPR, THE AI ACT, AND LEGAL-ETHICAL 

CONSIDERATIONS 

As AI-based passenger flow prediction systems are increasingly integrated into metro operations, they 

raise pressing legal and ethical questions. Particularly regarding personal data processing, algorithmic 

accountability, and fairness. These issues are especially pertinent in the European context, where two 

cornerstone regulatory frameworks shape the boundaries of acceptable AI use: the GDPR and the 

proposed AI Act. 

These regulations do not merely impose compliance obligations; they also offer a framework to build 

trustworthy AI systems that are transparent, human-centric, and respectful of individual rights. Below, 

the key intersections between predictive AI in metros and these regulations are analysed, identifying 

practical tensions and best practices for developers and operators. 

6.3.1 DATA PRIVACY, PSEUDONYMIZATION, AND THE 

CHALLENGE OF ‘PERSONAL DATA’ 

AI systems in public transport often rely on granular data such as smart card usage, mobile app logs, 

station-entry timestamps, and even Bluetooth or Wi-Fi signals. Although these datasets may be de-

identified at first glance, they often contain persistent identifiers (e.g., card IDs, device hashes) that 

make it possible to trace individual movement patterns over time. Under the GDPR, such data is still 

considered personal data, unless it is irreversibly anonymized. 

One critical distinction lies between: 

• Anonymized data, which falls outside the scope of GDPR; and 

• Pseudonymized data, which remains subject to full GDPR protection. 
In practice, true anonymization is difficult to guarantee in mobility contexts, given the risk of re-

identification by correlating movement patterns, location, and time. As such, AI models that train on this 

data must ensure privacy by: 

• Applying privacy-preserving techniques like data aggregation, k-anonymity, or differential 
privacy. 

• Minimizing data collection, i.e., collecting only what is necessary to achieve the intended 
predictive purpose. 

• Regularly reviewing data retention policies, ensuring that historical passenger data is not 
stored indefinitely. 
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6.3.2 AUTOMATED DECISION-MAKING, HUMAN OVERSIGHT, AND 

THE RIGHT TO EXPLANATION 

Under Article 22 of the GDPR, individuals are afforded the right not to be subject to decisions that are 

based solely on automated processing, particularly when such decisions have a significant impact on 

them. While many AI-based crowd prediction systems in the transportation sector are used for 

operational planning or service optimization, there are instances where these systems can have direct 

consequences for passengers. For example, automated decisions such as platform closures, station 

redirection, or altered train schedules can significantly affect individuals' travel experiences. 

When a passenger is denied access to a platform or rerouted based on the output of an AI model, 

critical questions arise: 

• Was this decision made solely by an automated system? 

• Was the decision explainable? 

• Was there human oversight involved? 
 
These considerations are particularly important in the context of transportation, where decisions directly 

impact the safety, convenience, and rights of passengers. In addition to the rights granted under the 

GDPR, the AI Act further extends its focus to high-risk AI applications, including transport-related 

predictive systems. The AI Act classifies certain AI systems as high-risk due to their potential to impact 

public safety and the well-being of individuals. As a result, these systems are subject to stricter 

regulatory requirements, including: 

Human oversight mechanisms to ensure that decisions are not made entirely by automated systems, 

particularly in critical situations. Robust documentation and record-keeping of decision-making 

processes, enabling transparency and accountability in AI model operations. Transparency toward 

affected individuals regarding the rationale behind decisions, ensuring that they understand how and 

why specific actions are taken based on AI predictions. To comply with these standards, developers 

and operators of AI-based crowd prediction systems in the transportation sector must implement 

several key measures: 

• Explainable AI (XAI) methods: Techniques like SHAP, LIME, or attention visualization layers 

can be integrated into the AI models to enhance interpretability. These methods allow users to 

understand which features most influenced a prediction, making the system more transparent 

and explainable. 

• Override protocols and manual review processes: Particularly in high-stakes or safety-critical 

situations, it is crucial to have mechanisms in place that allow human operators to override AI 

decisions. This ensures that the decision-making process is not entirely dependent on 

automated systems, and human judgment can be applied when necessary. 

While the technical mechanisms for oversight are crucial, it is equally important to consider the 

organisational and human resources implications of deploying AI systems in transport operations. The 

shift toward AI-assisted or AI-led decision-making could reshape job roles, require reskilling of staff, 

and create new responsibilities around system monitoring, compliance, and ethics. These implications 

extend beyond the technical domain and touch on broader workforce dynamics and public trust. The 

ethical, social, and human resources impacts of AI in public transport, including potential biases, de-
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skilling, or job displacement, will be further explored in the dedicated WP11 – Ethics Requirements of 

this project. This WP will address the human-centric considerations needed to ensure that AI systems 

enhance — rather than undermine — the well-being, autonomy, and rights of both passengers and 

transport staff. 

 

6.3.3 FAIRNESS, NON-DISCRIMINATION, AND URBAN EQUITY 

Beyond individual privacy, AI systems in metro operations must also meet broader standards of 

fairness and non-discrimination. Models trained on historical data can inadvertently perpetuate 

structural biases—for instance, by allocating fewer resources to low-income neighbourhoods where 

ridership is lower, or by reinforcing racial, gender, or accessibility inequities. 

The EU’s AI Act places a strong emphasis on data governance, requiring developers to: 

• Audit training datasets for representativeness; 

• Ensure that protected attributes (like ethnicity or disability status) are not directly or indirectly 
leading to discriminatory outcomes; 

• Evaluate the impact of prediction-based decisions on vulnerable groups. 
A growing area of research within AI ethics is the development of fairness-aware machine learning, 

which introduces metrics like demographic parity, equal opportunity, and counterfactual fairness. 

Applying such principles to crowd prediction could ensure that metro services remain inclusive, 

particularly during policy decisions like where to increase train frequency or invest in infrastructure. 

 

6.3.4 ACCOUNTABILITY, DOCUMENTATION, AND REGULATORY 

READINESS 

Under both GDPR and the AI Act, accountability is not just a principle, but it is a legal requirement. 

Transit authorities and AI developers must demonstrate compliance through: 

• Clear documentation of data collection practices, model design, and risk mitigation strategies; 

• Impact assessments, such as Data Protection Impact Assessments, especially for high-risk 

processing; 

• Incident reporting mechanisms, should a model fail or behave unpredictably. 

Anticipating the enforcement of the AI Act, transit agencies must begin preparing for potential audits or 

certification schemes, which may be required for AI systems deemed high-risk. These certifications will 

likely focus on explainability, safety, human control, and cybersecurity. 

NEXUS is properly structured to be compliant with the accountability. The figures of the Data Project 

Officers (DPOs) and Data Protection Controller (DPC) were identified and reported in D1.2 – DATA 

MANAGEMENT PLAN – 1ST RELEASE both for the project and NEXUS partners. 
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7 CONCLUSION AND OUTLOOK 

The objective of the NEXUS project is to establish an innovative benchmark, addressing crucial 

challenges and guiding European metros toward transformative futures. Through optimization, analysis, 

energy and service efficiency, NEXUS aspires to pioneer innovative solutions in two European cities 

(Genoa, Italy and Sofia, Bulgaria) for the urban and metro transport of the future. 

The primary goal of this document is to equip readers with key insights into future metro operations, 

specifically focusing on how AI and data science can be leveraged to enhance system performance. 

It explores relevant use cases and offers practical implementation guidelines to support the integration 

of these cutting-edge technologies into metro networks. This document provides a comprehensive 

review of the current landscape of Data Science, Machine Learning, and Artificial Intelligence 

applications in the context of future metro operations. It introduces and contextualizes the foundational 

concepts of data science, machine learning, artificial intelligence, and metro operations and explores 

the anticipated impact of the EU AI Act on the development and deployment of AI-related use cases 

within this domain. 

The widespread adoption of digital technologies across industries—and particularly within metro 

operations—has led to the generation of vast amounts of data. When effectively analysed, this data 

becomes a powerful asset, enabling improved decision-making and the optimization of operational 

efficiency and overall system performance. This deliverable draws on extensive desktop research, 

reviewing a curated selection of key industry reports and publications that explore the role of AI and 

data science in public transport. It identifies and analyses emerging trends, current applications, and 

notable use cases within the sector. 

Additionally, it assesses the state-of-the-art in metro operations and AI integration from the perspective 

of a train manufacturer, offering insights into ongoing innovation and technological progress. This 

analysis is further enriched by findings from two industrial workshops, which provided practical, real-

world perspectives and highlighted industry needs related to AI implementation. Building on this 

foundation, the deliverable provides a detailed examination of four representative AI use cases in metro 

operations: crowding prediction, demand forecasting, timetable creation support, and anomaly 

detection, with a specific example focused on uncleanliness detection. These use cases, grounded in 

existing academic and industry literature, illustrate the potential of AI technologies to enhance 

operational efficiency, passenger experience, and service reliability.  

The integration of AI, IoT, and Big Data is poised to revolutionize metro systems, transforming urban 

transportation into a more intelligent, efficient, and sustainable mode of mobility. These technologies 

will drive automation, optimize operational workflows, and enhance real-time decision-making, creating 

safer, more reliable, and seamlessly connected metro networks. By harnessing the power of AI-driven 

analytics, IoT-enabled connectivity, and Big Data insights, metro systems can not only improve 

operational efficiency but also offer enhanced safety, sustainability, and a better experience for 

passengers.  

To move from concept to practice, these mentioned use cases are further developed through detailed 

implementation concepts, considering architectures, data requirements, technical challenges, and 
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potential integration pathways. The document outlines the data science and AI demonstrators that 

are developed and delivered throughout the project, setting the stage for tangible outcomes that can 

be applied in real-world metro systems. 

In all activities, there was close coordination and constant communication with the sister work 

packages, especially WP4 (Models supporting metro adaptability analysis) and WP5 (Future Train 

Control Systems Feasibility Study). This ensured close dovetailing of the research work and avoided 

any unnecessary duplication of work. The use cases mentioned are in an initial phase, mainly in the 

feasibility check phase, and will be further developed and continued in year 2 of the project. 

As the transportation sector faces increasing demands for smarter, more adaptable infrastructure, 

understanding how AI and data science can drive metro systems forward is crucial. The deliverable 

aims to provide readers with the foundational knowledge necessary to understand the transformative 

potential of these technologies and their real-world applications.  
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9 ANNEX 

MARKET RESEARCH ON AI IN METRO BUSINESS 

The tables below present the results of a market research study, which inform the content of Section 4. 
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Vendor Used in 
Metro 
Operations? 

Potential 
use in 
metro 
operations? 

Category  Name of 
solution  

Solution Assumed use of AI  

Alstom Yes Yes Operational 
Efficiency & 
Maintenance  

Health Hub   The goal of HealthHub is to 
collect data from various 
vehicle and infrastructure 
sources to provide 
predictive maintenance 
information.  

Advanced Analytics: HealthHub collects and processes data 
from trains, signaling systems, and infrastructure using 
sophisticated algorithms. This helps in understanding the 
Real-time behaviour of these systems. 
 
Predictive Maintenance: By analysing historical and Real-
time data, HealthHub can predict potential failures before 
they occur. This allows for timely maintenance 
interventions, reducing downtime and improving system 
reliability. 
 
Condition-Based Monitoring: The depot continuously 
monitors the condition of train fleets using AI-driven tools. 
This helps in identifying issues early and performing 
maintenance based on the actual condition of assets rather 
than on a fixed schedule. 
 
Data Integration: AI integrates data from various sources, 
providing a comprehensive view of asset health.  

Alstom Yes Yes Operational 
Efficiency  

Alstom's 
digital depot  

The primary goal of 
Alstom's Digital Depot is to 
enhance the efficiency, 
reliability, and availability of 
railway operations through 

Condition-Based Monitoring: The depot continuously 
monitors the condition of train fleets using AI-driven tools. 
This helps in identifying issues early and performing 
maintenance based on the actual condition of assets rather 
than on a fixed schedule. 
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Vendor Used in 
Metro 
Operations? 

Potential 
use in 
metro 
operations? 

Category  Name of 
solution  

Solution Assumed use of AI  

the integration of advanced 
digital technologies. 

Data Integration: AI integrates data from various sources, 
providing a comprehensive view of asset health.  
 
Advanced Analytics: Advanced analytics are used to process 
this data, supporting informed maintenance decisions. 
 
Predictive Maintenance: AI helps in planning and optimizing 
maintenance activities, ensuring that resources are used 
efficiently and effectively. 
 
Energy Consumption Optimization: AI algorithms are also 
used to optimize energy consumption, contributing to more 
sustainable and cost-effective operations 

Alstom Yes Yes Predictive 
Maintenance  

InfraScanner 
(used for 
Health-Hub)  

The InfraScanner is a 
specialized tool for 
monitoring and assessing 
the condition of railway 
tracks to detect anomalies 
such as track misalignments 
or excessive wear.  

Pattern Recognition: AI algorithms analyse data collected by 
InfraScanner to recognize patterns and detect anomalies 
such as track misalignments or excessive wear.  
 
Predictive Analytics: By processing historical and Real-time 
data, AI can predict potential issues before they become 
critical, enabling timely maintenance interventions. 

Alstom Yes Yes Predictive 
Maintenance  

Train Scanner 
(used for 
Health Hub)  

TrainScanner provides 
predictive maintenance and 
continuous assessment of 
rolling stock’s technical 
condition. Thanks to digital 

Condition-Based Monitoring: TrainScanner continuously 
monitors the condition of train components such as wheels, 
brake pads, and pantographs. AI-driven tools help in 
identifying issues early and performing maintenance based 
on the actual condition of assets. 
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Vendor Used in 
Metro 
Operations? 

Potential 
use in 
metro 
operations? 

Category  Name of 
solution  

Solution Assumed use of AI  

data analysis, it identifies 
the optimal moment for 
component 
replacement.based on 3D 
Scanners and Lasers. Focus: 
Wheels, brakepad and 
pantograph carbon stripes  

 
Advanced Analytics: Advanced analytics are used to process 
this data, supporting informed maintenance decisions. 
 
 Predictive Maintenance: AI algorithms analyse Real-time 
and historical data to predict potential failures before they 
occur. This allows for timely interventions, reducing 
downtime and improving reliability. 
 
Data Integration: AI integrates data from various sources, 
providing a comprehensive view of asset health.  

Alstom Yes Yes Operational 
Efficiency  

CBTC / 
driverless 
CBTC  

The goal of Alstom's CBTC 
(Communications-Based 
Train Control) range, 
including the Urbalis 
solutions, is to enhance the 
efficiency, capacity, and 
safety of urban transit 
systems to maximize 
network capacity and 
improve operational 
efficiency.  

Real-time Data Processing: The AI processes Real-time data 
from platform sensors to optimize operations  
 
Predictive Analytics: AI algorithms predict potential 
maintenance needs, reducing downtime and improving 
reliability 
 
Traffic Management Optimization (Algorithms): AI optimizes 
train schedules and headways to maximize network capacity 
and reduce congestion 
 
Energy Efficiency Optimization (Algorithms): The system 
uses AI to optimize energy consumption, reducing overall 
operational costs 
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Vendor Used in 
Metro 
Operations? 

Potential 
use in 
metro 
operations? 

Category  Name of 
solution  

Solution Assumed use of AI  

 
Collision Avoidance: AI ensures safe distances between 
trains, preventing collisions and enhancing passenger safety 
 
Real-time Updates for Customers: AI provides passengers 
with Real-time updates on train schedules and crowd levels, 
enhancing their travel experience. 

Alstom Yes Yes Operational 
Efficiency 

Urbalis Flo 
(APM & 
Monorail 
Signalling)  

Urbalis Flo is a sophisticated 
signalling solution  for 
Automated People Movers 
(APM) and monorail 
systems. This cloud-based 
system leverages AI and IoT 
technologies to transform 
maintenance processes and 
enhance operational 
efficiency for GoA4 
operations, real-time data 
collection and analysis, as 
well as proactive 
maintneance.  

Real-time data processing: AI continuously monitors train 
positions, speeds, and headways using Real-time data from 
various sensors 
 
Predictive Maintenance: AI algorithms analyse operational 
logs to predict potential maintenance needs, reducing 
downtime and improving reliability 
 
Traffic Management Optimization (Algorithms): AI optimizes 
train schedules and headways to maximize network capacity 
and reduce congestion  
 
Energy Efficiency Optimization (Algorithms): AI optimizes 
energy consumption, reducing operational costs and 
environmental impact  
 
Collision Avoidance: AI ensures safe distances between 
trains, preventing collisions and enhancing passenger safety. 
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Vendor Used in 
Metro 
Operations? 

Potential 
use in 
metro 
operations? 

Category  Name of 
solution  

Solution Assumed use of AI  

Alstom No  Yes Operational 
Safety 

Tramway & 
LRV 
signalling)  

Alstom's Tramway & Light 
Rail Vehicle (LRV) signalling 
solution provides advanced 
assistance for operations 
and safety, such as 
automated speed and 
breaking of manual trains in 
case of danger  

Machine Learning: Machine learning models can recognize 
patterns and suggest solutions, significantly speeding up 
troubleshooting. 
 
Predictive Maintenance: Analyzes operational logs to 
foresee potential issues and diagnose malfunctions quickly.  

Alstom Yes Yes Operational 
Efficiency & 
Safety  

Urbalis 
Vision™ 

Urbalis Vision is a 
comprehensive network 
control system developed 
by Alstom for metro, 
suburban rail, and tram 
operations for advanced 
traffic management and 
energy efficiency.  

Predictive Maintenance: Machine learning models analyse 
operational logs to foresee potential issues, diagnose 
malfunctions quickly, and suggest solutions to technicians.  
 
Machine Learning: Machine learning helps in identifying and 
managing incidents efficiently by analysing patterns and 
predicting potential disruptions (Smart Incident 
Management)  
 
Traffic Management Optimization: AI algorithms optimize 
train schedules and headways to maximize network capacity 
and reduce congestion. 

Alstom Yes Yes Operational 
Efficiency & 
Safety  

Alstom Onvia 
Lock™ 
interlocking 
family 

Alstom's Interlocking 4.0 
solution aims to enhance 
rail safety, capacity, and 
reliability by using digital 
technology to control 

Predictive Maintenance: AI algorithms analyse data from 
various sensors to predict potential failures before they 
occur, reducing downtime and maintenance costs.  
 
Real-time Monitoring and Control: AI systems continuously 
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Vendor Used in 
Metro 
Operations? 

Potential 
use in 
metro 
operations? 

Category  Name of 
solution  

Solution Assumed use of AI  

signals and points over 
greater distances, ensuring 
efficient and conflict-free 
train movements. This 
modular and scalable 
system integrates 
seamlessly with advanced 
train control systems and 
urban CBTC Systems, 
reducing maintenance costs 
and improving overall 
network performance 

monitor rail operations, providing Real-time data and 
insights to optimize performance and ensure safety. 

Alstom Yes Yes Operational 
Efficiency  

Wayside  Wayside systems are critical 
components in rail and 
transit operations, providing 
essential monitoring and 
control functions along the 
track. The solutions 
enhance system availability, 
simplify installation and 
maintenance, and provides 
advanced diagnostics and 
predictive analytics. It 
integrates seamlessly with 
urban rail systems, offering 

Automated Inspections: AI automates inspections, 
improving maintenance efficiency and reducing parts 
replacement. 
 
Data Analytics: AI is used for data acquisition and edge 
processing, providing insights through diagnostic and 
predictive analytics. This helps in better utilization of field 
devices and improves operational efficiency. 
 
Predictive Maintenance: AI-driven predictive diagnostics 
help foresee potential issues and diagnose malfunctions 
quickly, reducing downtime and improving overall 
maintenance productivity. 
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Vendor Used in 
Metro 
Operations? 

Potential 
use in 
metro 
operations? 

Category  Name of 
solution  

Solution Assumed use of AI  

real-time performance 
optimization and smart 
incident management 

Alstom Yes Yes Operational 
Efficiency  

Flex Care  Alstom's FlexCare solutions 
are designed to provide 
comprehensive 
maintenance and 
operational services for rail 
systems.  

Predictive Maintenance: This uses machine learning 
algorithms to predict potential failures and optimize 
maintenance schedules. These algorithms help in optimizing 
operations, energy consumption, and resource allocation. 
 
Real-time Monitoring and Control: AI systems continuously 
monitor rail operations, providing Real-time data and 
insights to optimize performance and ensure safety. 

Alstom  Yes Yes Operational 
Efficiency  

Agate  The goal of Alstom's AGATE 
Train Control and 
Information Systems is to 
enable the digital 
transformation of trains by 
providing advanced 
connectivity, control, and 
monitoring capabilities  to 
ensure high-performance 
connectivity and seamless 
communication between 
onboard systems. 

Pattern Recognition: AI algorithms analyse data from 
onboard systems to recognize patterns and detect 
anomalies, ensuring efficient monitoring and control.  
 
Real-time Monitoring and Control: AI systems continuously 
monitor rail operations, providing Real-time data and 
insights to optimize performance and ensure safety. 

CAF Yes Yes Operational 
Efficiency  

LeadMind  LeadMind is a digital 
platform designed to 

Predictive Maintenance: AI algorithms analyse data to 
predict potential failures and optimize maintenance 
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Vendor Used in 
Metro 
Operations? 

Potential 
use in 
metro 
operations? 

Category  Name of 
solution  

Solution Assumed use of AI  

enhance the operation and 
maintenance of railway 
fleets through advanced 
data analytics and real-time 
monitoring.  

schedules.  
 
Advanced Analytics & Machine Learning: AI-driven analytics 
help reduce repetitive failures and improve overall fleet 
performance. 
 
Real-time Monitoring and Control: AI systems continuously 
monitor rail operations, providing Real-time data and 
insights to optimize performance and ensure safety. 

CAF Yes Yes Predictive 
Maintenance  

Automatic 
Inspection 
Station  

Automatic Inspection 
Station. The station uses 
high-resolution 3D and 2D 
imaging to capture detailed 
images of train components 
such as bogies, 
pantographs, wheels, 
brakes, underframes, roofs, 
and car body sides. These 
images are automatically 
acquired as the train passes 
through the inspection 
station. 

Predictive Maintenance: AI algorithms analyse data to 
predict potential failures and optimize maintenance 
schedules.  
 
Advanced Analytics: AI-driven analytics help reduce 
repetitive failures and improve overall fleet performance. 
 
Image and Video Analysis/Articifical Vision: AI is used for 
image and video analysis.  

CAF  Yes Yes Operational 
Efficiency & 
Safety  

Optio 
(Signalling-
CBTC)  

Optio is CAF's advanced 
Communication-Based Train 
Control (CBTC) system. 

Train Operations Optimization: AI algorithms help manage 
Real-time rail operations, improving efficiency and reducing 
delays.  
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Vendor Used in 
Metro 
Operations? 

Potential 
use in 
metro 
operations? 

Category  Name of 
solution  

Solution Assumed use of AI  

 
Functions: 
- precise train localization  
- real-time operations 
management  
- automatic driving 
capabilities  
- scalability and flexibility  
- compliance with safety 
standards. 

 
Energy Management Optimization: AI-driven analytics are 
used to monitor and reduce energy consumption, 
contributing to more sustainable transport. 

Hitachi  Yes Yes Operational 
Efficiency & 
Predictive 
Maintenance  

HMAX (Hyper 
Mobility 
Asset Expert) 
Suit for train, 
signalling and 
infrastructure  

All-in-one digital asset 
management platform that 
provides transport 
operators with AI-enhanced 
digital solutions to optimize 
trains, signaling and 
infrastructure management. 
Partnership with Nvidia: 
Digital solutions are 
powered by the NVIDIA IGX 
industrial-grade edge A- 
platform to provide edge 
computing. 

Predictive Analytics: AI algorithms analyse historical and 
Real-time data to predict potential issues before they occur, 
enabling timely maintenance interventions and reducing 
downtime. 
 
Edge Computing & Real-time processing of data: The 
platform uses NVIDIA's IGX industrial-grade edge AI 
technology to process data at the edge (on trains or 
infrastructure) in real time. 
 
 Automated Diagnostics: AI-driven tools provide automated 
diagnostics, helping maintenance teams quickly identify and 
address issues. 
 
Data Integration: AI integrates data from various sources, 
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Vendor Used in 
Metro 
Operations? 

Potential 
use in 
metro 
operations? 

Category  Name of 
solution  

Solution Assumed use of AI  

offering a comprehensive view of asset health and 
supporting informed decision-making 

Hitachi  Yes Yes Operational 
Efficiency & 
Passenger 
Comfort  

Flow 
Management  

Hitachi Flow Management 
solution monitors traffic 
flow through bus and rail 
transportation networks, 
helping identify bottlenecks 
and enabling operators to 
optimise their network 
service. In real-time, this 
can help operators reroute 
traffic in case of an issue on 
one part of the network, 
and also to predict where 
more vehicles may need to 
be deployed to meet 
demand. 

Passenger Flow Monitoring: AI uses cameras and sensors to 
count the number of passengers moving through specific 
areas in the transport network, such as bus stops and train 
stations.  
 
Passenger Flow Optimization: This helps operators manage 
passenger flows in Real-time and predict future issues based 
on historical data. 
 
Machine Learning: Machine learning models analyse 
historical data and current trends to predict future demand 
and crowding levels. Algorithms such as decision trees, 
random forests, and neural networks can be used to make 
these predictions more accurate over time.  
 
Natural Language Processing (NLP):  NLP is used to process 
and interpret data from various sources, such as social 
media, customer feedback, and service reports, to provide 
real-time updates on service availability and crowding 
levels. 
 
Pattern Recognition: AI algorithms analyse video data to 
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Vendor Used in 
Metro 
Operations? 

Potential 
use in 
metro 
operations? 

Category  Name of 
solution  

Solution Assumed use of AI  

recognize patterns and detect anomalies, such as unusual 
behaviour or unauthorized access 

Hitachi  Yes Yes Operational 
Efficiency & 
Safety  

 Video 
Analytics AI 
for Public 
Safety and 
Security 

The goal of Hitachi's Video 
Analytics AI for Public Safety 
and Security solution is to 
enhance the safety and 
security of public spaces 
through advanced video 
analytics.  
 
Key Functions:  
- Crime Prevention and 
Detection: The solution uses 
AI to analyse video data for 
the prevention and 
detection of crime, ensuring 
safe public places. - Crowd 
Management: It detects 
crowding, checks if people 
are wearing masks, and 
ensures adherence to social 
distancing rules, especially 
during pandemics. 

Pattern Recognition: AI algorithms analyse video data to 
recognize patterns and detect anomalies, such as unusual 
behaviour or unauthorized access. 
 
Predictive Analytics: By processing historical and Real-time 
data, AI can predict potential safety issues before they 
occur, enabling proactive interventions. 
 
Facial Recognition & Behavioural Analysis: AI-powered facial 
recognition technology can identify individuals in real-time, 
aiding in the detection of known offenders and missing 
persons 
 
Real-time Monitoring & Computer Vision: Technology 
detects crowding by analysing video feeds to count the 
number of people in a given area. 
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Vendor Used in 
Metro 
Operations? 

Potential 
use in 
metro 
operations? 

Category  Name of 
solution  

Solution Assumed use of AI  

Hitachi  Yes Yes Operational 
Efficiency & 
Maintenance  

Easy 
Boarding’ 
optimisation 
engine 

Hitachi's Easy Boarding 
optimization engine uses 
data from platform sensors, 
real-time train occupancy, 
and historical disembarking 
information. It can integrate 
with existing system sensors 
like CCTV and infrared 
beacons to count 
passengers. This 
information helps 
determine the best waiting 
positions for passengers on 
all platforms and provides 
recommendations to both 
passengers and station 
staff. Real-time updates 
prompt passengers to 
adjust their boarding 
positions. The solution also 
includes a control room 
interface. 

Real-time Data Processing: The AI processes Real-time data 
from platform sensors, including ICC TV and infrared 
beacons, to count and track passenger movements.  
 
Predictive Analytics: It uses historical data and Real-time 
inputs to predict passenger flow patterns and potential 
bottlenecks  
 
Machine Learning and Optimization Algorithms: The AI 
calculates the optimal waiting positions for passengers on 
the platform to ensure a balanced and efficient boarding 
process and makes dynamic adjustments by continuously 
updating recommendations based on Real-time changes in 
passenger flow and train occupancy. 
 
Natural Language Processing (NLP):  NLP is used to process 
and interpret data from various sources, such as social 
media, customer feedback, and service reports, to provide 
real-time updates on service availability and crowding 
levels. 

Hitachi  Yes Yes Customer 
Experience & 

360Pass 
mobility App 

360Pass uses artificial 
intelligence and Bluetooth 
sensors to connect entire 

Data Collection and Integration: The App uses Bluetooth 
sensor to detect and track passenger movements across 
various transport modes. It integrates data from different 
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Vendor Used in 
Metro 
Operations? 

Potential 
use in 
metro 
operations? 

Category  Name of 
solution  

Solution Assumed use of AI  

Operational 
Efficiency  

public transportation 
system in a specific 
city/area and make journeys 
as seamless as possible 
while capping costs. 

transport modes (buses, trains, e-vehicles) to predict 
passenger flows. 
 
Machine Learning: Machine learning models analyse 
historical data and current trends to predict future demand 
and crowding levels. Algorithms such as decision trees, 
random forests, and neural networks can be used to make 
these predictions more accurate over time.  

Siemens  Yes  Yes Training  SITrain  SITrain is a comprehensive 
learning platform that 
delivers training in 
automation technology, 
drive technology, digital 
industry software and 
industrial communication, 
serving both Siemens 
internal employees and 
external customers 

Personalized Learning Paths based on Algorithms: AI 
algorithms analyse individual learning needs and 
preferences to create customized training programs.  
 
Real-time Data Processing and Feedback: AI provides 
immediate feedback on exercises and assessments, helping 
learners understand their progress and areas for 
improvement. 
 
Adaptive Learning: The system adjusts the difficulty and 
content of training materials based on the learner's 
performance and progress. 
 
Predictive Analytics: AI predicts future learning needs and 
suggests relevant courses and materials to keep learners up-
to-date with industry trends. 
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Vendor Used in 
Metro 
Operations? 

Potential 
use in 
metro 
operations? 

Category  Name of 
solution  

Solution Assumed use of AI  

Natural Language Processing (NLP): AI-powered chatbots 
and virtual assistants use NLP to answer learner queries and 
provide support in Real-time. 

Siemens  Yes Yes Predictive 
Maintenance  

MoComp 
Bogie 
Diagnostic 
Solutions 
(Railigent)  

MoComp Boogie diagnostics 
Solutions measures the 
vibration on the boogies 
and transmits it to Railigent 
to optimize maintenance 
intervals and avoid 
downtimes  

Real-time Data Collection and Processing: AI algorithms 
analyse Real-time data from sensors embedded in bogie 
components to monitor their condition and performance.  
 
Predictive Maintenance: AI predicts potential failures and 
maintenance needs based on historical data and current 
operational conditions, allowing for proactive maintenance. 
 
Fault Detection: Machine learning techniques identify faulty 
mechanical components, such as dampers and springs, 
ensuring timely intervention. 
 
Trend Analysis: AI performs long-term condition analysis to 
detect patterns and trends that may indicate emerging 
issues. 

Siemens  Yes Yes Passenger 
Comfort and 
Operational 
Efficiency  

Hafas 
Analytics  

HAFAS (HaCon Timetable 
Information System) is a 
comprehensive software 
solution from HaCon, a 
subsidiary of Siemens AG, 
offering various functions 
for public transport such as 

Real-time Data Processing: AI algorithms analyse real-time 
data from various sources to provide dynamic updates 
about disruptions, fleet status, and operational data.  
 
Predictive Analytics: AI predicts potential disruptions or 
maintenance needs based on historical data and current 
conditions, enabling proactive measures. 
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Vendor Used in 
Metro 
Operations? 

Potential 
use in 
metro 
operations? 

Category  Name of 
solution  

Solution Assumed use of AI  

detailed information on 
timetables, including real-
time data and route 
planning.  

 
Anomaly Detection: Machine learning models identify 
unusual patterns in data that may indicate faults or 
inefficiencies, allowing for early intervention. 
 
Operational Optimization: AI supports the optimization of 
fleet operations and connection management, ensuring 
efficient use of resources and minimizing missed 
connections. 

Siemens  Yes Yes Ticketing 
(dynamic 
pricing for 
operator, 
Comfort for 
Customer)  

S3 Passenger  Software for reservation, 
inventory management, and 
ticketing 

Dynamic Pricing: AI algorithms adjust ticket prices in Real-
time based on demand, availability, and other factors to 
optimize revenue.  
 
Predictive Analytics: AI analyses historical data to forecast 
demand, helping operators manage inventory more 
effectively and plan for peak periods. 
 
Operational Efficiency: AI Algorithms tailor 
recommendations and offers to individual passengers based 
on their preferences and travel history. In addition, AI 
algorithms optimize the allocation of resources, such as 
train or bus schedules, to improve overall operational 
efficiency 

Siemens  Yes Yes Passenger 
Comfort  

XiXo The goal of XiXo, offered by 
eos.uptrade, is to simplify 

Operational efficiency Optimization: These algorithms 
continuously optimize the recognition of travelled routes 
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Vendor Used in 
Metro 
Operations? 

Potential 
use in 
metro 
operations? 

Category  Name of 
solution  

Solution Assumed use of AI  

and enhance the ticketing 
process for public 
transportation. Passengers 
can enter the car/train/etc. 
and activate their ticket by a 
push via their smartphone. 
Check-in and Check-out are 
handled automatically and 
the software is afterwards 
looking for the cheapest 
tarif.  

and fare calculations, ensuring accuracy and efficiency.  
 
Real-time Data Processing: AI processes Real-time data to 
provide up-to-date information on traffic conditions and 
passenger movements. 
 
Predictive Analytics: This function helps in forecasting 
demand and optimizing resource allocation, improving 
overall service efficiency. 
 
Automated Fare Calculation: AI ensures that passengers are 
charged the best possible fare based on their travel patterns 
and usage. 

Siemens  Yes Yes Operational 
Efficiency & 
Maintenance  

Railigent X - 
Health States  

Railigent X is a 
comprehensive suite of 
applications aimed at 
digitally increasing the 
capacity of rail systems and 
improving operational 
efficiency. Railigent X Health 
States is an application for 
predictive maintenance of 
vehicle and infrastructure 
that supports metro 
operators with information 

 Real-time Monitoring: AI continuously monitors the health 
of rail assets, providing Real-time insights and alerts for any 
anomalies. 
 
Predictive Maintenance: AI algorithms collect and analyse 
data from various sensors to predict potential equipment 
failures and schedule maintenance proactively, reducing 
downtime and maintenance costs. 
 
 Trend Analysis: AI identifies patterns and trends in 
operational data, enabling better planning and optimization 
of rail services. 
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about the conditions of 
components and predictive 
maintenance 
recommendations.  

Siemens  Yes Yes Maintenance  Easy Spares 
& Easy 
Spares Idea  

Easy Spares from Siemens 
Mobility is a comprehensive 
spare part logistics solution 
designed for rail systems. 
Easy Spares ID is a function 
of Easy Spares that 
identifies components by 
takinga and automatically 
ordering the new 
component within 3 
minutes.  

Machine Learning: The system's AI continuously learns from 
new data to improve the accuracy and speed of part 
identification. - Predictive Analytics: AI analyses historical 
data to forecast spare part needs, optimizing inventory 
management. 
 
Automated Spare Part Identification: AI algorithms enable 
the fast and accurate identification of spare parts using 
image recognition technology. This allows users to identify 
parts by simply taking a picture.  
 
Automated Order Processing: AI streamlines the order 
processing workflow, ensuring quick and efficient handling 
of orders  

Siemens  Yes Yes Operational 
Efficiency & 
Passenger 
Comfort  

Industrial AI 
for Metro 
Operators - 
Energy 
Efficient 
Timetabling 
(EETT)  

EETT Helps optimizing 
timetables and reduces 
energy consumption 

Energy Optimization: AI optimizes driving patterns and 
energy consumption to reduce overall energy usage, 
contributing to more sustainable operations.  
 
Delay Reduction and Optimization: AI dynamically adjusts 
train schedules and operations based on Real-time data to 
minimize delays and improve punctuality. 
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Passenger Flow Management: AI helps manage passenger 
flow by predicting peak times and adjusting train schedules 
accordingly. 
 
Operational Efficiency Optimization: AI enhances overall 
operational efficiency by optimizing various aspects of 
metro operations, from scheduling to resource allocation 

Siemens  Yes Yes Maintenance  VEMS VEMS is a vehicle scanner 
that provides a suite of 
automated inspection 
equipment for rail vehicles, 
utilizing AI for image and 
video analysis and sensor 
and too evaluate their 
service availability and 
safety. System is designed 
to enhance maintenance 
efficiency and operational 
safety for rail vehicles by 
virtual inspections, digital 
twin creation, predictive 
maintenance, increased 
efficiency, scalability and 
flexibility. This data can 

Image Recognition: AI algorithms enable the fast and 
accurate identification of components and anomalies by 
analysing images captured during the virtual examination.  
 
Digital Twin: AI is used to create virtual replicas of physical 
objects or systems. Thereby, real-time data from sensors 
and other sources is used to mirror the condition and 
behaviour of their physical counterparts.  
 
Predictive Maintenance: AI analyses historical and real-time 
data to predict potential equipment failures and schedule 
maintenance proactively, reducing downtime. 
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subsequently be 
transmitted to the Railigent 
X Health States Application. 

Siemens  Yes Yes Passenger 
Comfort 
/Security  

iCCTV Siemens' Intelligent CCTV 
(iCCTV) is a comprehensive 
video surveillance and 
analytics solution designed 
to enhance safety, security, 
and operational efficiency in 
rail systems.  

Real-Time Monitoring: iCCTV provides real-time video 
surveillance, allowing operators to monitor passenger flow, 
occupancy levels, and platform activities continuously. 
 
Advanced Analytics: The system uses AI-powered analytics 
to detect and analyse unusual behaviour, potential security 
threats, and safety-related incidents. This includes features 
like facial recognition, anomaly detection, and behavioural 
analysis. 
 
Pattern Recognition: AI recognizes patterns in passenger 
movement and behaviour, helping to optimize train capacity 
and improve passenger flow management. 
 
Crowd Management: iCCTV helps manage crowding by 
analysing video feeds to count passengers, monitor social 
distancing, and ensure compliance with safety regulations. 

Stadler Yes Yes Operational 
Efficicency  

Stadler Nova 
Pro Depot 
GoA4 

The goal of the Stadler 
NOVA Pro Depot GoA4 
system is to optimize 
shunting operations in 
railway and tram depots 

Real-time Data Processing: AI algorithms process data from 
various sensors and communication systems in Real-time to 
ensure precise control and monitoring of shunting 
operations.  
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through full automation, 
enhancing efficiency, safety, 
and resource utilization 

Predictive Maintenance: AI analyses data to predict 
potential equipment failures and maintenance needs, 
thereby reducing downtime and improving vehicle 
availability. 
 
Routing Optimization: AI optimizes the routing of vehicles 
within the depot to ensure efficient use of tracks and 
resources. 
 
Collision Avoidance: Advanced AI-driven collision warning 
systems use sensor data (e.g., cameras, radar, lidar) to 
detect obstacles and initiate automatic braking if necessary. 
 
Adaptive Learning: The system continuously learns from 
operational data to improve its performance and adapt to 
changing conditions 

Stadler Yes Yes Security  Stadler Nova 
Smartsense 
(Collision 
Warning 
System)  

The goal of the Stadler 
NOVA Smartsense system is 
to enhance driving safety by 
preventing collisions 
through advanced object 
detection technology. 

Real-time Data Processing: AI enables Real-time analysis of 
sensor data to provide immediate warnings and initiate 
automatic braking if necessary. 
 
Object Detection: AI algorithms process data from multiple 
sensors (radar, camera, and lidar) to accurately detect 
obstacles such as vehicles or people on the track.  

Stadler Yes Yes Passenger 
Comfort  

FIS4Stadler The goal of the FIS4Stadler 
system is to provide 

Real-time Data Processing: AI algorithms process Real-time 
data to provide dynamic updates about the route, including 
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passengers with dynamic 
and real-time information 
about their journey. This 
system aims to enhance the 
travel experience by 
ensuring passengers are 
well-informed throughout 
their trip. 

stops, delays, and connections.  
 
Predictive Analytics: AI predicts potential disruptions or 
delays based on historical data and current conditions, 
allowing for proactive communication with passengers. 
 
Adaptive Learning: The system continuously learns from 
operational data to improve the accuracy and relevance of 
the information provided. 

Stadler Yes Yes Passenger 
Comfort  

Mofis  The goal of the MOFIS® 
Fahrgast informations 
system is to provide 
dynamic and real-time 
passenger information at 
bus and train platforms, 
enhancing the travel 
experience by keeping 
passengers well-informed 

Real-time Data Processing: AI algorithms process Real-time 
data from various sources to provide dynamic updates 
about actual departure times and special information.  
 
Predictive Analytics: AI predicts potential disruptions or 
delays based on historical data and current conditions, 
allowing for proactive communication with passengers. 
 
Operational Optimization: AI supports operators in 
optimizing connections and preventing missed connections 
by notifying drivers about potential delays. 
 
Adaptive Learning: The system continuously learns from 
operational data to improve the accuracy and relevance of 
the information provided. 
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Thales No  Yes Customer 
Experience & 
safety  

Intelligent 
video 
analytics 
(DIVA)  

The Thales real-time crowd 
management solution, 
known as Distributed 
Intelligent Video Analytics 
(DIVA), is designed to 
enhance the efficiency and 
safety of railway stations 
and on-board trains. The 
solution aims to improve 
overall passenger safety, 
comfort, and travel 
experience by reducing 
dwell times and preventing 
congestion. 

Real-time Video Analytics: DIVA utilizes AI-powered video 
analytics to process data from existing CCTV cameras. This 
allows the system to measure passenger density in Real-
time without the need for additional sensors. 
 
Adaptive Learning: The system continuously learns from 
operational data to improve the accuracy and relevance of 
the information provided. 
 
Data Integration: AI facilitates seamless integration of 
existing data from various systems, ensuring efficient import 
and export of timetable and operational data. 
 
 Crowd Density Monitoring: The AI algorithms analyse video 
feeds to determine crowd density levels. The system uses a 
three-color code (red, yellow, green) to indicate different 
density levels and guide passengers to less crowded areas. 
 
Heat Maps: AI generates heat maps of stations and trains, 
which are used by the Operations Control Centre (OCC) to 
monitor passenger movements and manage crowding 
effectively. 

Thales  No  Yes  Predictive 
Maintenance & 

Guavus-IQ  Thales Guavus-IQ provides 
operators with AI-based 
network analytics and 

Real-time Monitoring: AI algorithms continuously monitor 
network performance, providing operators with up-to-date 
information on network health and performance.  
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Operational 
Efficiency  

operational capabilities as 
well as machine learning 
(ML) for predictive 
maintenance 

 
Automatic Fault Detection: The system uses AI to 
automatically detect faults and anomalies in the network, 
helping to identify issues before they impact service quality. 
 
Predictive Maintenance: By analysing historical and Real-
time data, AI predicts potential network failures and 
maintenance needs, allowing for proactive maintenance and 
reducing downtime 1. 

Thales  No  Yes Operational 
Efficiency  

Green Speed The goal of Thales' 
GreenSpeed product is to 
optimize train operations 
for energy efficiency and 
reduce emissions and 
enhance punctuality and 
comfort  

Speed Optimization Algorithms: AI algorithms continuously 
analyse Real-time data to determine the optimal train 
speed. This helps in reducing energy consumption and 
emissions by minimizing unnecessary braking and 
acceleration. 
 
Real-time Data Processing: AI processes Real-time data from 
various sources, including train telemetry and 
environmental conditions, to provide accurate and timely 
recommendations to train operators 

 


